A Survey on Contractible Edges in Graphs of a Prescribed Vertex Connectivity

被引:0
|
作者
Matthias Kriesell
机构
[1] Institut für Mathematik (A),
[2] University of Hannover,undefined
[3] Welfengarten 1,undefined
[4] 30167 Hannover,undefined
[5] Germany. e-mail: kriesell@math.uni-hannover.de,undefined
来源
Graphs and Combinatorics | 2002年 / 18卷
关键词
Recent Result; Vertex Connectivity; Contractible Edge; Prescribe Vertex;
D O I
暂无
中图分类号
学科分类号
摘要
 The aim of the present paper is to survey old and recent results on contractible edges in graphs of a given vertex connectivity.
引用
收藏
页码:1 / 30
页数:29
相关论文
共 50 条
  • [31] Contractible Non-Edges in Triangle-Free Graphs
    Matthias Kriesell
    Graphs and Combinatorics, 1999, 15 : 429 - 439
  • [32] The Removable Edges and the Contractible Subgraphs of 5-Connected Graphs
    Chengfu Qin
    Xiaofeng Guo
    Kiyoshi Ando
    Graphs and Combinatorics, 2015, 31 : 243 - 254
  • [33] Contractible Edges and Longest Cycles in 3-Connected Graphs
    Egawa, Yoshimi
    Nakamura, Shunsuke
    GRAPHS AND COMBINATORICS, 2023, 39 (01)
  • [34] Contractible edges in 2-connected locally finite graphs
    Chan, Tsz Lung
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (02):
  • [35] On vertex connectivity and absolute algebraic connectivity for graphs
    Kirkland, S
    Pati, S
    LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (03): : 253 - 284
  • [36] An extremal problem on contractible edges in 3-connected graphs
    Anderson, J
    Wu, HD
    GRAPHS AND COMBINATORICS, 2006, 22 (02) : 145 - 152
  • [37] The Removable Edges and the Contractible Subgraphs of 5-Connected Graphs
    Qin, Chengfu
    Guo, Xiaofeng
    Ando, Kiyoshi
    GRAPHS AND COMBINATORICS, 2015, 31 (01) : 243 - 254
  • [38] GRAPHS WITH PRESCRIBED CONNECTIVITY AND LINE GRAPH CONNECTIVITY
    BAUER, D
    TINDELL, R
    JOURNAL OF GRAPH THEORY, 1979, 3 (04) : 393 - 395
  • [39] An Extremal Problem on Contractible Edges in 3-Connected Graphs
    Joe Anderson
    Haidong Wu
    Graphs and Combinatorics, 2006, 22 : 145 - 152
  • [40] Contractible Edges and Longest Cycles in 3-Connected Graphs
    Yoshimi Egawa
    Shunsuke Nakamura
    Graphs and Combinatorics, 2023, 39