Contractible Edges and Longest Cycles in 3-Connected Graphs
被引:0
|
作者:
Egawa, Yoshimi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Dept Appl Math, 1-3 Kagurazaka,Shinju Ku, Tokyo 1628601, JapanTokyo Univ Sci, Dept Appl Math, 1-3 Kagurazaka,Shinju Ku, Tokyo 1628601, Japan
Egawa, Yoshimi
[1
]
Nakamura, Shunsuke
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Technol, Kurume Coll, Dept Liberal Arts Sci & Math, 1-1-1 Komorino, Fukuoka 8308555, JapanTokyo Univ Sci, Dept Appl Math, 1-3 Kagurazaka,Shinju Ku, Tokyo 1628601, Japan
Nakamura, Shunsuke
[2
]
机构:
[1] Tokyo Univ Sci, Dept Appl Math, 1-3 Kagurazaka,Shinju Ku, Tokyo 1628601, Japan
[2] Natl Inst Technol, Kurume Coll, Dept Liberal Arts Sci & Math, 1-1-1 Komorino, Fukuoka 8308555, Japan
3-Connected graph;
Contractible edge;
Longest cycle;
MAXIMUM NUMBER;
D O I:
10.1007/s00373-022-02609-5
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We show that if G is a 3-connected graph of order at least 5, then there exists a longest cycle C of G such that the number of contractible edges of G which are on C is greater than or equal to (|E(C)| + 5) /6.