Poletskiĭ Type Inequality for Mappings from the Orlicz-Sobolev Classes

被引:0
|
作者
Anatoly Golberg
Ruslan Salimov
Evgeny Sevost’yanov
机构
[1] Holon Institute of Technology,Department of Applied Mathematics
[2] National Academy of Sciences of Ukraine,Institute of Mathematics
[3] Zhitomir State University,Department of Mathematical Analysis
来源
关键词
Orlicz Sobolev Classes; Type Inequality; Quasiregular Mappings; Multiplicity Function; Open Discrete Mapping;
D O I
暂无
中图分类号
学科分类号
摘要
We study the distortion of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-module under non-homeomorphic mappings f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} from Orlicz-Sobolev classes Wloc1,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,\varphi }_\mathrm{loc}$$\end{document} and established a strengthened form of Poletskii’s inequality. This inequality was known for quasiregular mappings and conformal moduli. In addition, our estimates involve the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-outer dilatation (instead of the classical inner dilatation) and the multiplicity function. In the case of the planar domains, the condition f∈Wloc1,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in W^{1,\varphi }_\mathrm{loc}$$\end{document} can be replaced by f∈Wloc1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in W^{1,1}_\mathrm{loc}$$\end{document}.
引用
收藏
页码:881 / 901
页数:20
相关论文
共 50 条
  • [1] Poletskii Type Inequality for Mappings from the Orlicz-Sobolev Classes
    Golberg, Anatoly
    Salimov, Ruslan
    Sevost'yanov, Evgeny
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (05) : 881 - 901
  • [2] ON THE ORLICZ-SOBOLEV CLASSES AND MAPPINGS WITH BOUNDED DIRICHLET INTEGRAL
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 65 (09) : 1394 - 1405
  • [3] ON THE LOCAL BEHAVIOR OF OPEN DISCRETE MAPPINGS FROM THE ORLICZ-SOBOLEV CLASSES
    Sevost'yanov, E. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2017, 68 (09) : 1447 - 1465
  • [4] Normality of the Orlicz-Sobolev Classes
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2016, 68 (01) : 115 - 126
  • [5] Holder and Lipschitz Continuity in Orlicz-Sobolev Classes, Distortion and Harmonic Mappings
    Mateljevic, Miodrag
    Salimov, Ruslan
    Sevostyanov, Evgeny
    FILOMAT, 2022, 36 (16) : 5359 - 5390
  • [6] A short proof of the Orlicz-Sobolev inequality
    Kone, Hassane
    ADVANCES IN APPLIED MATHEMATICS, 2019, 107 : 116 - 124
  • [7] TOWARD THE THEORY OF ORLICZ-SOBOLEV CLASSES
    Kovtonyuk, D. A.
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (06) : 929 - 963
  • [8] Boundary behavior of Orlicz-Sobolev classes
    D. A. Kovtonyuk
    V. I. Ryazanov
    R. R. Salimov
    E. A. Sevost’yanov
    Mathematical Notes, 2014, 95 : 509 - 519
  • [9] Boundary behavior of Orlicz-Sobolev classes
    Kovtonyuk, D. A.
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    MATHEMATICAL NOTES, 2014, 95 (3-4) : 509 - 519
  • [10] On the local behavior of the Orlicz-Sobolev classes
    Sevost’yanov E.A.
    Skvortsov S.A.
    Journal of Mathematical Sciences, 2017, 224 (4) : 563 - 581