Multi-agent reinforcement learning based on local communication

被引:1
|
作者
Wenxu Zhang
Lei Ma
Xiaonan Li
机构
[1] Southwest Jiaotong University,School of Electrical Engineering
来源
Cluster Computing | 2019年 / 22卷
关键词
Reinforcement learning; Multi-agent; Local communication; Consensus;
D O I
暂无
中图分类号
学科分类号
摘要
Aiming at the locality and uncertainty of observations in large-scale multi-agent application scenarios, the model of Decentralized Partially Observable Markov Decision Processes (DEC-POMDP) is considered, and a novel multi-agent reinforcement learning algorithm based on local communication is proposed. For a distributed learning environment, the elements of reinforcement learning are difficult to describe effectively in local observation situation, and the learning behaviour of each individual agent is influenced by its teammates. The local communication with consensus protocol is utilized to agree on the global observing environment, and thus that a part of strategies generated by repeating observations are eliminated, and the agent team gradually reach uniform opinion on the state of the event or object to be observed, they can thus approach a unique belief space regardless of whether each individual agent can perform a complete or partial observation. The simulation results show that the learning strategy space is reduced, and the learning speed is improved.
引用
收藏
页码:15357 / 15366
页数:9
相关论文
共 50 条
  • [31] Multi-agent deep reinforcement learning with type-based hierarchical group communication
    Hao Jiang
    Dianxi Shi
    Chao Xue
    Yajie Wang
    Gongju Wang
    Yongjun Zhang
    Applied Intelligence, 2021, 51 : 5793 - 5808
  • [32] Deep Reinforcement Learning Based Task-Oriented Communication in Multi-Agent Systems
    He, Guojun
    Feng, Mingjie
    Zhang, Yu
    Liu, Guanghua
    Dai, Yueyue
    Jiang, Tao
    IEEE WIRELESS COMMUNICATIONS, 2023, 30 (03) : 112 - 119
  • [33] Multi-agent deep reinforcement learning with type-based hierarchical group communication
    Jiang, Hao
    Shi, Dianxi
    Xue, Chao
    Wang, Yajie
    Wang, Gongju
    Zhang, Yongjun
    APPLIED INTELLIGENCE, 2021, 51 (08) : 5793 - 5808
  • [34] GHGC: Goal-based Hierarchical Group Communication in Multi-Agent Reinforcement Learning
    Jiang, Hao
    Shi, Dianxi
    Xue, Chao
    Wang, Yajie
    Wang, Gongju
    Zhang, Yongjun
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3507 - 3514
  • [35] Multi-agent Cooperative Search based on Reinforcement Learning
    Sun, Yinjiang
    Zhang, Rui
    Liang, Wenbao
    Xu, Cheng
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 891 - 896
  • [36] Hierarchical Multi-Agent Training Based on Reinforcement Learning
    Wang, Guanghua
    Li, Wenjie
    Wu, Zhanghua
    Guo, Xian
    2024 9TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS, ACIRS, 2024, : 11 - 18
  • [37] Function approximation based multi-agent reinforcement learning
    Abul, O
    Polat, F
    Alhajj, R
    12TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2000, : 36 - 39
  • [38] DACOM: Learning Delay-Aware Communication for Multi-Agent Reinforcement Learning
    Yuan, Tingting
    Chung, Hwei-Ming
    Yuan, Jie
    Fu, Xiaoming
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11763 - 11771
  • [39] Cooperative multi-agent game based on reinforcement learning
    Liu, Hongbo
    HIGH-CONFIDENCE COMPUTING, 2024, 4 (01):
  • [40] Survey of Multi-Agent Strategy Based on Reinforcement Learning
    Chen, Liang
    Guo, Ting
    Liu, Yun-ting
    Yang, Jia-ming
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 604 - 609