Multi-agent reinforcement learning based on local communication

被引:1
|
作者
Wenxu Zhang
Lei Ma
Xiaonan Li
机构
[1] Southwest Jiaotong University,School of Electrical Engineering
来源
Cluster Computing | 2019年 / 22卷
关键词
Reinforcement learning; Multi-agent; Local communication; Consensus;
D O I
暂无
中图分类号
学科分类号
摘要
Aiming at the locality and uncertainty of observations in large-scale multi-agent application scenarios, the model of Decentralized Partially Observable Markov Decision Processes (DEC-POMDP) is considered, and a novel multi-agent reinforcement learning algorithm based on local communication is proposed. For a distributed learning environment, the elements of reinforcement learning are difficult to describe effectively in local observation situation, and the learning behaviour of each individual agent is influenced by its teammates. The local communication with consensus protocol is utilized to agree on the global observing environment, and thus that a part of strategies generated by repeating observations are eliminated, and the agent team gradually reach uniform opinion on the state of the event or object to be observed, they can thus approach a unique belief space regardless of whether each individual agent can perform a complete or partial observation. The simulation results show that the learning strategy space is reduced, and the learning speed is improved.
引用
收藏
页码:15357 / 15366
页数:9
相关论文
共 50 条
  • [21] Multi-Agent Reinforcement Learning
    Stankovic, Milos
    2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 43 - 43
  • [22] Cooperative Behavior by Multi-agent Reinforcement Learning with Abstractive Communication
    Tanda, Jin
    Moustafa, Ahmed
    Ito, Takayuki
    2019 IEEE INTERNATIONAL CONFERENCE ON AGENTS (ICA), 2019, : 8 - 13
  • [23] Multi-agent Pathfinding with Communication Reinforcement Learning and Deadlock Detection
    Ye, Zhaohui
    Li, Yanjie
    Guo, Ronghao
    Gao, Jianqi
    Fu, Wen
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2022), PT I, 2022, 13455 : 493 - 504
  • [24] Semantic Communication for Partial Observation Multi-agent Reinforcement Learning
    Do, Hoang Khoi
    Dinh, Thi Quynh
    Nguyen, Minh Duong
    Nguyen, Tien Hoa
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 319 - 323
  • [25] Optimistic sequential multi-agent reinforcement learning with motivational communication
    Huang, Anqi
    Wang, Yongli
    Zhou, Xiaoliang
    Zou, Haochen
    Dong, Xu
    Che, Xun
    NEURAL NETWORKS, 2024, 179
  • [26] Deep Hierarchical Communication Graph in Multi-Agent Reinforcement Learning
    Liu, Zeyang
    Wan, Lipeng
    Sui, Xue
    Chen, Zhuoran
    Sun, Kewu
    Lan, Xuguang
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 208 - 216
  • [27] Cooperative Multi-agent Reinforcement Learning with Hierachical Communication Architecture
    Liu, Shifan
    Yuan, Quan
    Chen, Bo
    Luo, Guiyang
    Li, Jinglin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 14 - 25
  • [28] Communication-Efficient and Federated Multi-Agent Reinforcement Learning
    Krouka, Mounssif
    Elgabli, Anis
    Ben Issaid, Chaouki
    Bennis, Mehdi
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (01) : 311 - 320
  • [29] Multi-agent cooperative learning research based on reinforcement learning
    Liu, Fei
    Zeng, Guangzhou
    2006 10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, PROCEEDINGS, VOLS 1 AND 2, 2006, : 1408 - 1413
  • [30] Attention based Reinforcement Learning for Efficient Communication under Constraint in Multi-Agent Systems
    Mei, Jianguo
    Quan, Zhibin
    Yang, Wankou
    Cao, Xianghui
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3867 - 3873