Multi-agent reinforcement learning based on local communication

被引:1
|
作者
Wenxu Zhang
Lei Ma
Xiaonan Li
机构
[1] Southwest Jiaotong University,School of Electrical Engineering
来源
Cluster Computing | 2019年 / 22卷
关键词
Reinforcement learning; Multi-agent; Local communication; Consensus;
D O I
暂无
中图分类号
学科分类号
摘要
Aiming at the locality and uncertainty of observations in large-scale multi-agent application scenarios, the model of Decentralized Partially Observable Markov Decision Processes (DEC-POMDP) is considered, and a novel multi-agent reinforcement learning algorithm based on local communication is proposed. For a distributed learning environment, the elements of reinforcement learning are difficult to describe effectively in local observation situation, and the learning behaviour of each individual agent is influenced by its teammates. The local communication with consensus protocol is utilized to agree on the global observing environment, and thus that a part of strategies generated by repeating observations are eliminated, and the agent team gradually reach uniform opinion on the state of the event or object to be observed, they can thus approach a unique belief space regardless of whether each individual agent can perform a complete or partial observation. The simulation results show that the learning strategy space is reduced, and the learning speed is improved.
引用
收藏
页码:15357 / 15366
页数:9
相关论文
共 50 条
  • [1] Multi-agent reinforcement learning based on local communication
    Zhang, Wenxu
    Ma, Lei
    Li, Xiaonan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 6): : 15357 - 15366
  • [2] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [3] Diffusion-based Multi-agent Reinforcement Learning with Communication
    Qi, Xinyue
    Tang, Jianhang
    Jin, Jiangming
    Zhang, Yang
    2024 IEEE VTS ASIA PACIFIC WIRELESS COMMUNICATIONS SYMPOSIUM, APWCS 2024, 2024,
  • [4] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [5] Learning structured communication for multi-agent reinforcement learning
    Junjie Sheng
    Xiangfeng Wang
    Bo Jin
    Junchi Yan
    Wenhao Li
    Tsung-Hui Chang
    Jun Wang
    Hongyuan Zha
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [6] Multi-agent Reinforcement Learning Algorithm Based on Local Information
    Li, Chonglun
    He, Zhaoxiong
    Wang, Bingzheng
    Wang, Zhen
    Li, Lingbin
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 3080 - 3091
  • [7] HyperComm: Hypergraph-based communication in multi-agent reinforcement learning
    Zhu, Tianyu
    Shi, Xinli
    Xu, Xiangping
    Gui, Jie
    Cao, Jinde
    NEURAL NETWORKS, 2024, 178
  • [8] Learning of Communication Codes in Multi-Agent Reinforcement Learning Problem
    Kasai, Tatsuya
    Tenmoto, Hiroshi
    Kamiya, Akimoto
    2008 IEEE CONFERENCE ON SOFT COMPUTING IN INDUSTRIAL APPLICATIONS SMCIA/08, 2009, : 1 - +
  • [9] Multi-Agent Deep Reinforcement Learning with Emergent Communication
    Simoes, David
    Lau, Nuno
    Reis, Luis Paulo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [10] Sparse communication in multi-agent deep reinforcement learning
    Han, Shuai
    Dastani, Mehdi
    Wang, Shihan
    NEUROCOMPUTING, 2025, 625