On tame operators between non-archimedean power series spaces

被引:0
|
作者
Wiesław Śliwa
Agnieszka Ziemkowska
机构
[1] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
关键词
Non-archimedean power series space; tame operator; Schauder basis; 47S10; 46S10; 46A45;
D O I
暂无
中图分类号
学科分类号
摘要
Let p ∈ {1,∞}. We show that any continuous linear operator T from A1(a) to Ap(b) is tame, i.e., there exists a positive integer c such that supx ‖Tx‖k/|x|ck < ∞ for every k ∈ ℤ. Next we prove that a similar result holds for operators from A∞(a) to Ap(b) if and only if the set Mb,a of all finite limit points of the double sequence (bi/aj)i,j∈ℤ is bounded. Finally we show that the range of every tame operator from A∞(a) to A∞(b) has a Schauder basis.
引用
收藏
页码:869 / 884
页数:15
相关论文
共 50 条
  • [31] Non-Archimedean Analytic Spaces
    Werner A.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2013, 115 (1) : 3 - 20
  • [32] NON-ARCHIMEDEAN BANACH SPACES
    PUT, MVD
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1969, 97 (03): : 309 - &
  • [33] A NOTE ON PENCIL OF BOUNDED LINEAR OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES
    Blali, Aziz
    EL Amrani, Abdelkhalek
    Ettayb, Jawad
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2022, 28 (02): : 105 - 109
  • [34] Non-Archimedean orthomodular spaces and their residual spaces
    Keller, HA
    Ochsenius, H
    Ultrametric Functional Analysis, 2005, 384 : 145 - 156
  • [35] Non-Archimedean Hilbert like spaces
    Aguayo, J.
    Nova, M.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (05) : 787 - 797
  • [36] NON-ARCHIMEDEAN ANALYTIFICATION OF ALGEBRAIC SPACES
    Conrad, Brian
    Temkin, Michael
    JOURNAL OF ALGEBRAIC GEOMETRY, 2009, 18 (04) : 731 - 788
  • [37] NON-ARCHIMEDEAN TEICHMULLER-SPACES
    HERRLICH, F
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1987, 90 (02): : 145 - 169
  • [38] ORTHOGONAL TRANSFORMATIONS IN NON-ARCHIMEDEAN SPACES
    SHILKRET, N
    ARCHIV DER MATHEMATIK, 1972, 23 (03) : 285 - &
  • [39] RIESZS LEMMA IN NON-ARCHIMEDEAN SPACES
    BECKENSTEIN, E
    NARICI, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1971, 3 (APR): : 501 - +
  • [40] SPACES OF NON-ARCHIMEDEAN VALUED FUNCTIONS
    KATSARAS, AK
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5B (02): : 603 - 621