On tame operators between non-archimedean power series spaces

被引:0
|
作者
Wiesław Śliwa
Agnieszka Ziemkowska
机构
[1] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
关键词
Non-archimedean power series space; tame operator; Schauder basis; 47S10; 46S10; 46A45;
D O I
暂无
中图分类号
学科分类号
摘要
Let p ∈ {1,∞}. We show that any continuous linear operator T from A1(a) to Ap(b) is tame, i.e., there exists a positive integer c such that supx ‖Tx‖k/|x|ck < ∞ for every k ∈ ℤ. Next we prove that a similar result holds for operators from A∞(a) to Ap(b) if and only if the set Mb,a of all finite limit points of the double sequence (bi/aj)i,j∈ℤ is bounded. Finally we show that the range of every tame operator from A∞(a) to A∞(b) has a Schauder basis.
引用
收藏
页码:869 / 884
页数:15
相关论文
共 50 条
  • [21] ISOMORPHISMS OF RINGS AND SEMIGROUPS OF CONTINUOUS OPERATORS OF NON-ARCHIMEDEAN SPACES
    MIKHALEVA, LI
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1985, (06): : 7 - 10
  • [22] On Pencil of Bounded Linear Operators on Non-archimedean Banach Spaces
    El Amrani, A.
    Ettayb, J.
    Blali, A.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 13 - 13
  • [23] NON-ARCHIMEDEAN UNITARY OPERATORS
    Kochubei, Anatoly N.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2011, 17 (03): : 219 - 224
  • [24] Non-archimedean shift operators
    Anatoly N. Kochubei
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2010, 2 (3) : 260 - 264
  • [25] Non-Archimedean Shift Operators
    Kochubei, Anatoly N.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2010, 2 (03) : 260 - 264
  • [26] Non-Archimedean normal operators
    Kochubei, Anatoly N.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
  • [27] Embeddings of non-Archimedean Banach manifolds in non-Archimedean Banach spaces
    Lyudkovskii, SV
    RUSSIAN MATHEMATICAL SURVEYS, 1998, 53 (05) : 1097 - 1098
  • [28] On non-archimedean Gurarii spaces
    Kakol, J.
    Kubis, W.
    Kubzdela, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 969 - 981
  • [29] Selectors in non-Archimedean spaces
    Artico, G.
    Marconi, U.
    Moresco, R.
    Pelant, J.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (03) : 540 - 551
  • [30] On non-Archimedean Hilbertian spaces
    Kubzdela, Albert
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 601 - 610