Dynamic Data Structures for Timed Automata Acceptance

被引:0
|
作者
Alejandro Grez
Filip Mazowiecki
Michał Pilipczuk
Gabriele Puppis
Cristian Riveros
机构
[1] Pontificia Universidad Católica de Chile,
[2] Millennium Institute for Foundational Research on Data,undefined
[3] University of Warsaw,undefined
[4] University of Udine,undefined
来源
Algorithmica | 2022年 / 84卷
关键词
Timed automata; Data stream; Dynamic data structure; Theory of computation; Models of computation;
D O I
暂无
中图分类号
学科分类号
摘要
We study a variant of the classical membership problem in automata theory, which consists of deciding whether a given input word is accepted by a given automaton. We do so through the lenses of parameterized dynamic data structures: we assume that the automaton is fixed and its size is the parameter, while the input word is revealed as in a stream, one symbol at a time following the natural order on positions. The goal is to design a dynamic data structure that can be efficiently updated upon revealing the next symbol, while maintaining the answer to the query on whether the word consisting of symbols revealed so far is accepted by the automaton. We provide complexity bounds for this dynamic acceptance problem for timed automata that process symbols interleaved with time spans. The main contribution is a dynamic data structure that maintains acceptance of a fixed one-clock timed automaton A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} with amortized update time 2O(|A|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}(|{\mathcal {A}}|)}$$\end{document} per input symbol.
引用
收藏
页码:3223 / 3245
页数:22
相关论文
共 50 条
  • [41] A Menagerie of Timed Automata
    Fontana, Peter
    Cleaveland, Rance
    ACM COMPUTING SURVEYS, 2014, 46 (03)
  • [42] Perturbed timed automata
    Alur, R
    La Torre, S
    Madhusudan, P
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2005, 3414 : 70 - 85
  • [43] The Opacity of Timed Automata
    An, Jie
    Gao, Qiang
    Wang, Lingtai
    Zhan, Naijun
    Hasuo, Ichiro
    FORMAL METHODS, PT I, FM 2024, 2025, 14933 : 620 - 637
  • [44] Timed cooperating automata
    Lanotte, Ruggero
    Maggiolo-Schettin, Andrea
    Peron, Adriano
    Fundamenta Informaticae, 2000, 43 (01) : 153 - 173
  • [45] Alternating timed automata
    Lasota, S
    Walukiewicz, I
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, PROCEEDINGS, 2005, 3441 : 250 - 265
  • [46] On Simplification of Timed Automata
    Gromov, Maxim
    PROCEEDINGS OF 2016 IEEE EAST-WEST DESIGN & TEST SYMPOSIUM (EWDTS), 2016,
  • [47] Recursive Timed Automata
    Trivedi, Ashutosh
    Wojtczak, Dominik
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, 2010, 6252 : 306 - 324
  • [48] Interrupt Timed Automata
    Berard, Beatrice
    Haddad, Serge
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATIONAL STRUCTURES, PROCEEDINGS, 2009, 5504 : 197 - +
  • [49] Timed P Automata
    Barbuti, Roberto
    Maggiolo-Schettini, Andrea
    Milazzo, Paolo
    Tesei, Luca
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2009, 227 : 21 - 36
  • [50] Calculus for timed automata
    D'Argenio, P.R.
    Brinksma, E.
    1996, (1135)