Dynamic Data Structures for Timed Automata Acceptance

被引:0
|
作者
Alejandro Grez
Filip Mazowiecki
Michał Pilipczuk
Gabriele Puppis
Cristian Riveros
机构
[1] Pontificia Universidad Católica de Chile,
[2] Millennium Institute for Foundational Research on Data,undefined
[3] University of Warsaw,undefined
[4] University of Udine,undefined
来源
Algorithmica | 2022年 / 84卷
关键词
Timed automata; Data stream; Dynamic data structure; Theory of computation; Models of computation;
D O I
暂无
中图分类号
学科分类号
摘要
We study a variant of the classical membership problem in automata theory, which consists of deciding whether a given input word is accepted by a given automaton. We do so through the lenses of parameterized dynamic data structures: we assume that the automaton is fixed and its size is the parameter, while the input word is revealed as in a stream, one symbol at a time following the natural order on positions. The goal is to design a dynamic data structure that can be efficiently updated upon revealing the next symbol, while maintaining the answer to the query on whether the word consisting of symbols revealed so far is accepted by the automaton. We provide complexity bounds for this dynamic acceptance problem for timed automata that process symbols interleaved with time spans. The main contribution is a dynamic data structure that maintains acceptance of a fixed one-clock timed automaton A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} with amortized update time 2O(|A|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}(|{\mathcal {A}}|)}$$\end{document} per input symbol.
引用
收藏
页码:3223 / 3245
页数:22
相关论文
共 50 条
  • [21] Input/Output automata: Basic, timed, hybrid, probabilistic, dynamic,...
    Lynch, N
    CONCUR 2003 - CONCURRENCY THEORY, 2003, 2761 : 191 - 192
  • [22] Timed unfoldings for networks of timed automata
    Bouyer, Patricia
    Haddad, Serge
    Reynier, Pierre-Alain
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, PROCEEDINGS, 2006, 4218 : 292 - 306
  • [23] Timed patterns: TCOZ to timed automata
    Dong, JS
    Hao, P
    Qin, SC
    Sun, J
    Yi, W
    FORMAL METHODS AND SOFTWARE ENGINEERING, PROCEEDINGS, 2004, 3308 : 483 - 498
  • [24] Axiomatising timed automata
    Huimin Lin
    Wang Yi
    Acta Informatica, 2002, 38 : 277 - 305
  • [25] Updatable timed automata
    Bouyer, P
    Dufourd, C
    Fleury, E
    Petit, A
    THEORETICAL COMPUTER SCIENCE, 2004, 321 (2-3) : 291 - 345
  • [26] On Implementable Timed Automata
    Feo-Arenis, Sergio
    Vujinovic, Milan
    Westphal, Bernd
    FORMAL TECHNIQUES FOR DISTRIBUTED OBJECTS, COMPONENTS, AND SYSTEMS, FORTE 2020, 2020, 12136 : 78 - 95
  • [27] Robust timed automata
    Gupta, V
    Henzinger, TA
    Jagadeesan, R
    HYBRID AND REAL-TIME SYSTEMS, 1997, 1201 : 331 - 345
  • [28] On probabilistic timed automata
    Beauquier, D
    THEORETICAL COMPUTER SCIENCE, 2003, 292 (01) : 65 - 84
  • [29] On interleaving in timed automata
    Ben Salah, Ramzi
    Bozga, Marius
    Maler, Oded
    CONCUR 2006 - CONCURRENCY THEORY, PROCEEDINGS, 2006, 4137 : 465 - 476
  • [30] THE THEORY OF TIMED AUTOMATA
    ALUR, R
    DILL, D
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 600 : 45 - 73