Nekhoroshev estimates for commuting nearly integrable symplectomorphisms

被引:0
|
作者
Jinxin Xue
机构
[1] University of Chicago,
来源
关键词
Nekhoroshev estimates; commuting symplectomorphisms; generating functions; resonances; 37J25; 37J40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the Nekhoroshev estimates for commuting nearly integrable symplectomorphisms. We show quantitatively how ℤm symmetry improves the stability time. This result can be considered as a counterpart of Moser’s theorem [11] on simultaneous conjugation of commuting circle maps in the context of Nekhoroshev stability. We also discuss the possibility of Tits’ alternative for nearly integrable symplectomorphisms.
引用
收藏
页码:248 / 265
页数:17
相关论文
共 50 条
  • [41] Chirikov and Nekhoroshev diffusion estimates: Bridging the two sides of the river
    Cincotta, Pablo M.
    Efthymiopoulos, Christos
    Giordano, Claudia M.
    Mestre, Martin F.
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 266 : 49 - 64
  • [42] Nekhoroshev estimates for steep real-analytic elliptic equilibrium points
    Bounemoura, Abed
    Fayad, Bassam
    Niederman, Laurent
    NONLINEARITY, 2020, 33 (01) : 1 - 33
  • [43] Flexibility of sections of nearly integrable Hamiltonian systems
    Burago, Dmitri
    Chen, Dong
    Ivanov, Sergei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (04)
  • [44] STABILITY OF NEARLY-INTEGRABLE SYSTEMS WITH DISSIPATION
    Lhotka, Christoph
    Celletti, Alessandra
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (02):
  • [45] Arnold diffusion for nearly integrable Hamiltonian systems
    Cheng, Chong-Qing
    Xue, Jinxin
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (08) : 1649 - 1712
  • [46] The extension of integrable mappings to non-commuting variables
    Ramani, A
    Tamizhmani, T
    Grammaticos, B
    Tamizhmani, KM
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2003, 10 : 149 - 165
  • [47] Arnold diffusion for nearly integrable Hamiltonian systems
    Chong-Qing Cheng
    Jinxin Xue
    Science China(Mathematics), 2023, 66 (08) : 1649 - 1712
  • [48] Stability of Superdiffusion in Nearly Integrable Spin Chains
    De Nardis, Jacopo
    Gopalakrishnan, Sarang
    Vasseur, Romain
    Ware, Brayden
    PHYSICAL REVIEW LETTERS, 2021, 127 (05)
  • [49] Arnold diffusion for nearly integrable Hamiltonian systems
    Chong-Qing Cheng
    Jinxin Xue
    Science China Mathematics, 2023, 66 : 1649 - 1712
  • [50] Correlations and commuting transfer matrices in integrable unitary circuits
    Claeys, Pieter W.
    Herzog-Arbeitman, Jonah
    Lamacraft, Austen
    SCIPOST PHYSICS, 2022, 12 (01):