The Translative Kissing Number of Tetrahedra Is 18

被引:0
|
作者
I. Talata
机构
[1] Department of Mathematics,
[2] Auburn University,undefined
[3] 218 Parker Hall,undefined
[4] Auburn,undefined
[5] AL 36849-5310,undefined
[6] USA talatis@mail.auburn.edu,undefined
来源
关键词
Maximum Density; Translative Packing; Nonoverlapping Translate;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the maximum number of mutually nonoverlapping translates of any tetrahedron T which touch T is 18. Moreover, in the case of 18 touching translates the arrangement turns out to be unique. We also give a description of all possible arrangements of 17 touching translates. Finally, we apply these results to determine the minimum and maximum densities of 17+ -neighbor translative packings of tetrahedra.
引用
收藏
页码:231 / 248
页数:17
相关论文
共 50 条
  • [41] KISSING NUMBER IN NON-EUCLIDEAN SPACES OF CONSTANT SECTIONAL CURVATURE
    Dostert, Maria
    Kolpakov, Alexander
    MATHEMATICS OF COMPUTATION, 2021, 90 (331) : 2507 - 2525
  • [42] A sharp upper estimate of the number of integral points in a 5-dimensional tetrahedra
    Lin, KP
    Yau, SST
    JOURNAL OF NUMBER THEORY, 2002, 93 (02) : 207 - 234
  • [43] On the Number of Congruent Classes of the Tetrahedra Determined by Given Volume, Circumradius and Face Areas
    Zeng, Zhenbing
    Yang, Lu
    Dehbi, Lydia
    PROCEEDINGS OF THE 2019 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC '19), 2019, : 363 - 370
  • [44] The number of tetrahedra sharing the same metric invariants via symbolic and numerical computations
    Dehbi, Lydia
    Zeng, Zhenbing
    Yang, Lu
    JOURNAL OF SYMBOLIC COMPUTATION, 2022, 108 : 41 - 54
  • [45] Finite number of similarity classes in Longest Edge Bisection of nearly equilateral tetrahedra
    Trujillo-Pino, Agustin
    Suarez, Jose Pablo
    Padron, Miguel A.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 472
  • [46] CHROMOSOME NUMBER 18
    CURTIS, DJ
    HUMANGENETIK, 1973, 18 (03): : 273 - 277
  • [47] Counting the number of integral points in general n-dimensional tetrahedra and Bernoulli polynomials
    Lin, KP
    Yau, SST
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (02): : 229 - 241
  • [48] AL6O18 RINGS OF TETRAHEDRA IN STRUCTURE OF CA8.5NAAL6O18
    NISHI, F
    TAKEUCHI, Y
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1975, 31 (APR15): : 1169 - 1173
  • [49] ON SPHERICAL CODES GENERATING THE KISSING NUMBER IN DIMENSION-8 AND DIMENSION-24
    ERICSON, T
    ZINOVIEV, V
    DISCRETE MATHEMATICS, 1992, 106 : 199 - 207
  • [50] The Kissing Number in 48 Dimensions for Codes with Certain Forbidden Distances is 52 416 000
    Boyvalenkov, Peter
    Cherkashin, Danila
    RESULTS IN MATHEMATICS, 2025, 80 (01)