The Translative Kissing Number of Tetrahedra Is 18

被引:0
|
作者
I. Talata
机构
[1] Department of Mathematics,
[2] Auburn University,undefined
[3] 218 Parker Hall,undefined
[4] Auburn,undefined
[5] AL 36849-5310,undefined
[6] USA talatis@mail.auburn.edu,undefined
来源
关键词
Maximum Density; Translative Packing; Nonoverlapping Translate;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the maximum number of mutually nonoverlapping translates of any tetrahedron T which touch T is 18. Moreover, in the case of 18 touching translates the arrangement turns out to be unique. We also give a description of all possible arrangements of 17 touching translates. Finally, we apply these results to determine the minimum and maximum densities of 17+ -neighbor translative packings of tetrahedra.
引用
收藏
页码:231 / 248
页数:17
相关论文
共 50 条
  • [31] A Short Solution of the Kissing Number Problem in Dimension Three
    Alexey Glazyrin
    Discrete & Computational Geometry, 2023, 69 : 931 - 935
  • [32] HYPERBOLIC 3-MANIFOLDS WITH LARGE KISSING NUMBER
    Doria, Cayo
    Murillo, Plinio G. P.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (11) : 4595 - 4607
  • [33] PLANE SILICON-OXYGEN RINGS WITH MAXIMUM NUMBER OF TETRAHEDRA
    POBEDIMSKAYA, EA
    KRISTALLOGRAFIYA, 1977, 22 (02): : 393 - 393
  • [34] Kissing技术临床应用18例分析
    蔡尚郎
    中国介入心脏病学杂志, 1995, (01) : 16 - 17
  • [35] On the number of tetrahedra with minimum, unit, and distinct volumes in three-space
    Dumitrescu, Adrian
    Toth, Csaba D.
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (02): : 203 - 224
  • [36] A sharp estimate of the number of integral points in a 4-dimensional tetrahedra
    Xu, YJ
    Yau, SST
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 473 : 1 - 23
  • [37] On the number of tetrahedra with minimum, unit, and distinct volumes in three-space
    Dumitrescu, Adrian
    Toth, Csaba D.
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 1114 - +
  • [38] Computing the Exact Number of Similarity Classes in the Longest Edge Bisection of Tetrahedra
    Suarez, Jose P.
    Trujillo, Agustin
    Moreno, Tania
    MATHEMATICS, 2021, 9 (12)
  • [39] Linear Programming Bounds on the Kissing Number of q-ary Codes
    Sole, Patrick
    Liu, Yi
    Cheng, Wei
    Guilley, Sylvain
    Rioul, Olivier
    2021 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [40] Improving the Semidefinite Programming Bound for the Kissing Number by Exploiting Polynomial Symmetry
    Machado, Fabricio Caluza
    de Oliveira Filho, Fernando Mario
    EXPERIMENTAL MATHEMATICS, 2018, 27 (03) : 362 - 369