Binary partitions and binary partition polytopes

被引:0
|
作者
George E. Andrews
Jim Lawrence
机构
[1] Pennsylvania State University,Mathematics Department
[2] George Mason University,Department of Mathematical Sciences
来源
Aequationes mathematicae | 2017年 / 91卷
关键词
Primary 05A17; Secondary 52B05; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
This paper delves into the number of partitions of positive integers n into powers of 2 in which exactly m powers of 2 are used an odd number of times. The study of these numbers is motivated by their connections with the f-vectors of the binary partition polytopes.
引用
收藏
页码:859 / 869
页数:10
相关论文
共 50 条
  • [21] Polytopes of partitions of numbers
    Shlyk, VA
    EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (08) : 1139 - 1153
  • [22] Binary Plane Partitions for Disjoint Line Segments
    Toth, Csaba D.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 45 (04) : 617 - 646
  • [23] Intersection matrices for partitions by binary perfect codes
    Avgustinovich, SV
    Lobstein, AC
    Solov'eva, FI
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1621 - 1624
  • [24] On the Kegel-Wielandt σ-problem for binary partitions
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Tyutyanov, V. N.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (01) : 443 - 451
  • [25] Approximations by Smooth Transitions in Binary Space Partitions
    Lage, Marcos
    Bordignon, Alex
    Petronetto, Fabiano
    Veiga, Alvaro
    Tavares, Geovan
    Lewiner, Thomas
    Lopes, Helio
    SIBGRAPI 2008: XXI BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, 2008, : 230 - +
  • [26] Binary Plane Partitions for Disjoint Line Segments
    Csaba D. Tóth
    Discrete & Computational Geometry, 2011, 45 : 617 - 646
  • [27] OPTIMAL BINARY SPACE PARTITIONS FOR ORTHOGONAL OBJECTS
    PATERSON, MS
    YAO, FF
    JOURNAL OF ALGORITHMS, 1992, 13 (01) : 99 - 113
  • [28] PROOF OF CHURCHHOUSE CONJECTURE CONCERNING BINARY PARTITIONS
    GUPTA, H
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (JUL): : 53 - &
  • [29] Cylindrical static and kinetic Binary Space Partitions
    Agarwal, PK
    Guibas, LJ
    Murali, TM
    Vitter, JS
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2000, 16 (02): : 103 - 127
  • [30] ON THE BURGE CORRESPONDENCE BETWEEN PARTITIONS AND BINARY WORDS
    ANDREWS, GE
    BRESSOUD, DM
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1985, 15 (02) : 225 - 233