On the Kegel-Wielandt σ-problem for binary partitions

被引:0
|
作者
Ballester-Bolinches, A. [1 ]
Kamornikov, S. F. [2 ]
Tyutyanov, V. N. [3 ]
机构
[1] Dept Matemat, Dr Moliner 50, Valencia 46100, Spain
[2] Francisk Skorina State Gomel Univ, Dept Math, 104 Sovetskaya Str, Gomel 246019, BELARUS
[3] Gomel Branch Int Univ MITSO, 46 a October Ave, Gomel 246029, BELARUS
关键词
Finite group; Hall subgroup; sigma-subnormal subgroup; Factorised group; FINITE; SUBGROUPS; PROGRAM;
D O I
10.1007/s10231-021-01123-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let sigma = {sigma(i) : i is an element of I} be a partition of the set P of all prime numbers. A subgroup X of a finite group G is called sigma-subnormal in G if there is a chain of subgroups X = X-0 subset of X-1 subset of ... subset of X-n = G where for every j = 1, ..., n the subgroup Xj-1 is normal in X-j or X-j/Core(Xj)(Xj-1) is a sigma(i)-group for some i is an element of I. In the special case that sigma is the partition of P into sets containing exactly one prime each, the sigma-subnormality reduces to the familiar case of subnormality. A finite group G is sigma-complete if G possesses at least one Hall sigma(i)-subgroup for every i is an element of I, and a subgroup H of G is said to be sigma(i)-subnormal in G if H boolean AND S is a Hall sigma(i)-subgroup of H for any Hall sigma(i)-subgroup S of G. Skiba proposes in the Kourovka Notebook the following problem (Question 19.86), that is called the Kegel-Wielandt sigma-problem: Is it true that a subgroup H of a sigma-complete group G is sigma-subnormal in G if H is sigma(i)-subnormal in G for all i is an element of I? The main goal of this paper is to solve the Kegel-Wielandt sigma-problem for binary partitions.
引用
收藏
页码:443 / 451
页数:9
相关论文
共 50 条
  • [1] On the Kegel-Wielandt σ-Problem
    Kamornikov, S. F.
    Tyutyanov, V. N.
    MATHEMATICAL NOTES, 2021, 109 (3-4) : 580 - 584
  • [2] On the Kegel-Wielandt σ-Problem
    Kamornikov, S. F.
    Tyutyanov, V. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (SUPPL 1) : S113 - S120
  • [3] On the Kegel-Wielandt σ-problem
    Kamornikov, S. F.
    Tyutyanov, V. N.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2023, 29 (04): : 121 - 129
  • [4] The Kegel-Wielandt σ-Problem: Reduction to Simple Groups
    Kamornikov, S. F.
    Tyutyanov, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2025, 66 (01) : 31 - 39
  • [5] On some aspects of the Kegel-Wielandt s-problem
    Xu, Zh.
    Yi, X.
    Kamornikov, S. F.
    RICERCHE DI MATEMATICA, 2024, 73 (05) : 2771 - 2778
  • [6] On Some Aspects of the Kegel-Wielandt σ-Conjecture
    Kamornikov, S. F.
    Tyutyanov, V. N.
    RUSSIAN MATHEMATICS, 2022, 66 (02) : 15 - 23
  • [7] A PROOF OF THE KEGEL-WIELANDT CONJECTURE ON SUBNORMAL SUBGROUPS
    KLEIDMAN, PB
    ANNALS OF MATHEMATICS, 1991, 133 (02) : 369 - 428
  • [8] An extension of the Kegel-Wielandt theorem to locally finite groups
    Franciosi, S
    DeGiovanni, F
    Sysak, YP
    GLASGOW MATHEMATICAL JOURNAL, 1996, 38 : 171 - 176
  • [9] THE KEGEL AND WIELANDT THEOREM
    AMBERG, B
    ARCHIV DER MATHEMATIK, 1983, 40 (04) : 289 - 296
  • [10] On Some Aspects of the Kegel–Wielandt σ-Conjecture
    S. F. Kamornikov
    V. N. Tyutyanov
    Russian Mathematics, 2022, 66 : 15 - 23