Maximally supersymmetric AdS solutions and their moduli spaces

被引:0
|
作者
Severin Lüst
Philipp Rüter
Jan Louis
机构
[1] Centre de Physique Théorique,Maxwell Institute for Mathematical Sciences and Department of Mathematics
[2] École Polytechnique,Zentrum für Mathematische Physik
[3] CNRS,undefined
[4] Heriot-Watt University,undefined
[5] Fachbereich Physik der Universität Hamburg,undefined
[6] Universität Hamburg,undefined
关键词
Extended Supersymmetry; Supergravity Models; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We study maximally supersymmetric AdSD solutions of gauged supergravities in dimensions D ≥ 4. We show that such solutions can only exist if the gauge group after spontaneous symmetry breaking is a product of two reductive groups HR × Hmat, where HR is uniquely determined by the dimension D and the number of supersymmetries N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} while Hmat is unconstrained. This resembles the structure of the global symmetry groups of the holographically dual SCFTs, where HR is interpreted as the R-symmetry and Hmat as the flavor symmetry. Moreover, we discuss possible supersymmetry preserving continuous deformations, which correspond to the conformal manifolds of the dual SCFTs. Under the assumption that the scalar manifold of the supergravity is a symmetric space we derive general group theoretical conditions on these moduli. Using these results we determine the AdS solutions of all gauged supergravities with more than 16 real supercharges. We find that almost all of them do not have supersymmetry preserving deformations with the only exception being the maximal supergravity in five dimensions with a moduli space given by SU(1, 1)/U(1). Furthermore, we determine the AdS solutions of four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 3 supergravities and show that they similarly do not admit supersymmetric moduli.
引用
收藏
相关论文
共 50 条
  • [41] On supersymmetric AdS6 solutions in 10 and 11 dimensions
    J. Gutowski
    G. Papadopoulos
    Journal of High Energy Physics, 2017
  • [42] Supersymmetric AdS5 solutions of massive IIA supergravity
    Apruzzi, Fabio
    Fazzi, Marco
    Passias, Achilleas
    Tomasiello, Alessandro
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (06):
  • [43] Supersymmetric AdS6 solutions of type IIB supergravity
    Kim, Hyojoong
    Kim, Nakwoo
    Suh, Minwoo
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (10):
  • [44] Consistent Kaluza-Klein reductions and supersymmetric AdS solutions
    Gauntlett, Jerome P.
    Colgain, Eoin O.
    Varela, Oscar
    PARTICLES, STRINGS, AND COSMOLOGY, 2007, 957 : 317 - 320
  • [45] Supersymmetric AdS5 solutions of type IIB supergravity
    Gauntlett, Jerome P.
    Martelli, Dario
    Sparks, James
    Waldram, Daniel
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (14) : 4693 - 4718
  • [46] Moduli spaces of AdS5 vacua in N=2 supergravity
    Louis, Jan
    Muranaka, Constantin
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [47] Supersymmetric AdS5 solutions of massive IIA supergravity
    Fabio Apruzzi
    Marco Fazzi
    Achilleas Passias
    Alessandro Tomasiello
    Journal of High Energy Physics, 2015
  • [48] Moduli spaces of solutions of a noncommutative sigma model
    A. V. Domrin
    Theoretical and Mathematical Physics, 2008, 156 : 1231 - 1246
  • [49] Moduli spaces of solutions of a noncommutative sigma model
    Domrin, A. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 156 (03) : 1231 - 1246
  • [50] A maximally supersymmetric Kondo model
    Harrison, Sarah
    Kachru, Shamit
    Torroba, Gonzalo
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (19)