Maximally supersymmetric AdS solutions and their moduli spaces

被引:0
|
作者
Severin Lüst
Philipp Rüter
Jan Louis
机构
[1] Centre de Physique Théorique,Maxwell Institute for Mathematical Sciences and Department of Mathematics
[2] École Polytechnique,Zentrum für Mathematische Physik
[3] CNRS,undefined
[4] Heriot-Watt University,undefined
[5] Fachbereich Physik der Universität Hamburg,undefined
[6] Universität Hamburg,undefined
关键词
Extended Supersymmetry; Supergravity Models; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We study maximally supersymmetric AdSD solutions of gauged supergravities in dimensions D ≥ 4. We show that such solutions can only exist if the gauge group after spontaneous symmetry breaking is a product of two reductive groups HR × Hmat, where HR is uniquely determined by the dimension D and the number of supersymmetries N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} while Hmat is unconstrained. This resembles the structure of the global symmetry groups of the holographically dual SCFTs, where HR is interpreted as the R-symmetry and Hmat as the flavor symmetry. Moreover, we discuss possible supersymmetry preserving continuous deformations, which correspond to the conformal manifolds of the dual SCFTs. Under the assumption that the scalar manifold of the supergravity is a symmetric space we derive general group theoretical conditions on these moduli. Using these results we determine the AdS solutions of all gauged supergravities with more than 16 real supercharges. We find that almost all of them do not have supersymmetry preserving deformations with the only exception being the maximal supergravity in five dimensions with a moduli space given by SU(1, 1)/U(1). Furthermore, we determine the AdS solutions of four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 3 supergravities and show that they similarly do not admit supersymmetric moduli.
引用
收藏
相关论文
共 50 条
  • [21] New supersymmetric AdS3 solutions
    Gauntlett, Jerome P.
    Mac Conamhna, Oisin A. P.
    Mateos, Toni
    Waldram, Daniel
    PHYSICAL REVIEW D, 2006, 74 (10)
  • [22] Fibred GK geometry and supersymmetric AdS solutions
    Gauntlett, Jerome P.
    Martelli, Dario
    Sparks, James
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
  • [23] Supersymmetric AdS3, AdS2 and bubble solutions
    Gauntlett, Jerome P.
    Waldram, Daniel
    Kim, Nakwoo
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04):
  • [24] Decomposition of BPS moduli spaces and asymptotics of supersymmetric partition functions
    Ardehali, Arash Arabi
    Hong, Junho
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [26] Decomposition of BPS moduli spaces and asymptotics of supersymmetric partition functions
    Arash Arabi Ardehali
    Junho Hong
    Journal of High Energy Physics, 2022
  • [27] New supersymmetric string moduli spaces from frozen singularities
    Héctor Parra De Freitas
    Journal of High Energy Physics, 2023
  • [28] On supersymmetric AdS3 solutions of Type II
    Passias, Achilleas
    Prins, Daniel
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
  • [29] On supersymmetric AdS3 solutions of Type II
    Achilleas Passias
    Daniël Prins
    Journal of High Energy Physics, 2021
  • [30] Kaluza-Klein consistency and supersymmetric AdS solutions
    Gauntlett, Jerome P.
    Colgain, Eoin O.
    Varela, Oscar
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2008, 56 (7-9): : 786 - 791