Maximally supersymmetric AdS solutions and their moduli spaces

被引:0
|
作者
Severin Lüst
Philipp Rüter
Jan Louis
机构
[1] Centre de Physique Théorique,Maxwell Institute for Mathematical Sciences and Department of Mathematics
[2] École Polytechnique,Zentrum für Mathematische Physik
[3] CNRS,undefined
[4] Heriot-Watt University,undefined
[5] Fachbereich Physik der Universität Hamburg,undefined
[6] Universität Hamburg,undefined
关键词
Extended Supersymmetry; Supergravity Models; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We study maximally supersymmetric AdSD solutions of gauged supergravities in dimensions D ≥ 4. We show that such solutions can only exist if the gauge group after spontaneous symmetry breaking is a product of two reductive groups HR × Hmat, where HR is uniquely determined by the dimension D and the number of supersymmetries N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} while Hmat is unconstrained. This resembles the structure of the global symmetry groups of the holographically dual SCFTs, where HR is interpreted as the R-symmetry and Hmat as the flavor symmetry. Moreover, we discuss possible supersymmetry preserving continuous deformations, which correspond to the conformal manifolds of the dual SCFTs. Under the assumption that the scalar manifold of the supergravity is a symmetric space we derive general group theoretical conditions on these moduli. Using these results we determine the AdS solutions of all gauged supergravities with more than 16 real supercharges. We find that almost all of them do not have supersymmetry preserving deformations with the only exception being the maximal supergravity in five dimensions with a moduli space given by SU(1, 1)/U(1). Furthermore, we determine the AdS solutions of four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 3 supergravities and show that they similarly do not admit supersymmetric moduli.
引用
收藏
相关论文
共 50 条
  • [1] Maximally supersymmetric AdS solutions and their moduli spaces
    Lust, Severin
    Ruter, Philipp
    Louis, Jan
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [2] Moduli spaces of maximally supersymmetric solutions on non-commutative tori and non-commutative orbifolds
    Konechny, A
    Schwarz, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (09):
  • [3] N=4 supersymmetric AdS5 vacua and their moduli spaces
    Louis, Jan
    Triendl, Hagen
    Zagermann, Marco
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10):
  • [4] Maximally supersymmetric RG flows and AdS duality
    Intriligator, K
    NUCLEAR PHYSICS B, 2000, 580 (1-2) : 99 - 120
  • [5] No triangles on the moduli space of maximally supersymmetric gauge theory
    Boels, Rutger H.
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05):
  • [6] No triangles on the moduli space of maximally supersymmetric gauge theory
    Rutger H. Boels
    Journal of High Energy Physics, 2010
  • [7] Moduli flow and non-supersymmetric AdS attractors
    Astefanesei, Dumitru
    Nastase, Horatiu
    Yavartanoo, Hossein
    Yun, Sangheon
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (04):
  • [8] Integrability of strings in non-maximally supersymmetric AdS superbackgrounds
    Sorokin, Dmitri
    PHYSICA SCRIPTA, 2012, 86 (02)
  • [9] Maximally supersymmetric AdS4 vacua in N=4 supergravity
    Louis, Jan
    Triendl, Hagen
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10):
  • [10] Maximally supersymmetric AdS4 vacua in N = 4 supergravity
    Jan Louis
    Hagen Triendl
    Journal of High Energy Physics, 2014