A PCA-based approach for brain aneurysm segmentation

被引:0
|
作者
Sarada Prasad Dakua
Julien Abinahed
Abdulla Al-Ansari
机构
[1] Qatar Science & Technology Park,Qatar Robotic Surgery Centre
[2] Hamad General Hospital,Department of Urology
关键词
Cerebral aneurysm; Segmentation; Contrast enhancement; Stochastic resonance; Kalman filter; Principal component analysis; Level sets;
D O I
暂无
中图分类号
学科分类号
摘要
Segmentation of brain aneurysm is of paramount importance in aneurysm treatment planning. However, the segmentation of intensity varying and low-contrast cerebral blood vessels is an extremely challenging task. In this paper, we present an approach to segmenting the brain vasculature in low contrast computed tomography angiography and magnetic resonance angiography. The main contributions are: (1) a stochastic resonance based methodology in discrete Hartley transform domain is developed to enhance the contrast of a selected angiographic image for patch placement, and (2) a multi-scale adaptive principal component analysis based method is proposed that estimates the phase map of input images. Level-set method is applied to the phase-map data in order to segment the vasculature. We have tested the algorithm on real datasets obtained from two sources, CIBC institute and Hamad Medical corporation. The average Dice coefficient (in %) is found to be 94.1±1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$94.1\pm 1.2$$\end{document} (value indicates the mean and standard deviation) whereas average false positive ratio, false negative ratio, and specificity are found to be 0.019, 7.55×10-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.55\times 10^{-3}$$\end{document}, and 0.75, respectively. Average Hausdorff distance between segmented contour and ground truth is determined to be 2.97 mm. The qualitative and quantitative results show promising segmentation accuracy reflecting the potential of the proposed method.
引用
收藏
页码:257 / 277
页数:20
相关论文
共 50 条
  • [31] PCA-based design of a SEPIC converter
    De Nardo, A.
    Femia, N.
    Nicolo, M.
    Petrone, G.
    Spagnuolo, G.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-5, 2008, : 1670 - 1675
  • [32] PCA-Based Lung Motion Model
    Li, R.
    Lewis, J.
    Jia, X.
    Zhao, T.
    Lamb, J.
    Yang, D.
    Low, D.
    Jiang, S.
    MEDICAL PHYSICS, 2010, 37 (06)
  • [33] PCA-based web page watermarking
    Zhao, Qijun
    Lu, Hongtao
    PATTERN RECOGNITION, 2007, 40 (04) : 1334 - 1341
  • [34] PCA-BASED ECG LEAD RECONSTRUCTION
    Mann, S.
    Orglmeister, R.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58
  • [35] PCA-based compressive image fusion
    Chen, Yang
    Qin, Zheng
    Journal of Computational Information Systems, 2014, 10 (20): : 8891 - 8898
  • [36] PCA-Based Animal Classification System
    Dandil, Emre
    Polattimur, Rukiye
    2018 2ND INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT), 2018, : 497 - 501
  • [37] A classwise PCA-based recognition of neural data for brain-computer interfaces
    Das, Koel
    Osechinskiy, Sergey
    Nenadic, Zoran
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 6520 - +
  • [38] Optimized locating of sensors for approximating the macroscopic fundamental diagram: A PCA-based approach
    El Bukhari, Ahmad
    Moshahedi, Nadia
    Kattan, Lina
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2024, 163
  • [39] PCA-based Approach for Inhomogeneous PSF Estimation and Partial Volume Correction in PET
    Irace, Zacharie
    Reilhac, Anthonin
    de Vigo, Bruno Mendez
    Batatia, Hadj
    Costes, Nicolas
    2016 IEEE NUCLEAR SCIENCE SYMPOSIUM, MEDICAL IMAGING CONFERENCE AND ROOM-TEMPERATURE SEMICONDUCTOR DETECTOR WORKSHOP (NSS/MIC/RTSD), 2016,
  • [40] Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach
    Noureddine Kouaissah
    Sergio Ortobelli Lozza
    Ikram Jebabli
    Computational Economics, 2022, 60 : 833 - 859