A PCA-based approach for brain aneurysm segmentation

被引:0
|
作者
Sarada Prasad Dakua
Julien Abinahed
Abdulla Al-Ansari
机构
[1] Qatar Science & Technology Park,Qatar Robotic Surgery Centre
[2] Hamad General Hospital,Department of Urology
关键词
Cerebral aneurysm; Segmentation; Contrast enhancement; Stochastic resonance; Kalman filter; Principal component analysis; Level sets;
D O I
暂无
中图分类号
学科分类号
摘要
Segmentation of brain aneurysm is of paramount importance in aneurysm treatment planning. However, the segmentation of intensity varying and low-contrast cerebral blood vessels is an extremely challenging task. In this paper, we present an approach to segmenting the brain vasculature in low contrast computed tomography angiography and magnetic resonance angiography. The main contributions are: (1) a stochastic resonance based methodology in discrete Hartley transform domain is developed to enhance the contrast of a selected angiographic image for patch placement, and (2) a multi-scale adaptive principal component analysis based method is proposed that estimates the phase map of input images. Level-set method is applied to the phase-map data in order to segment the vasculature. We have tested the algorithm on real datasets obtained from two sources, CIBC institute and Hamad Medical corporation. The average Dice coefficient (in %) is found to be 94.1±1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$94.1\pm 1.2$$\end{document} (value indicates the mean and standard deviation) whereas average false positive ratio, false negative ratio, and specificity are found to be 0.019, 7.55×10-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.55\times 10^{-3}$$\end{document}, and 0.75, respectively. Average Hausdorff distance between segmented contour and ground truth is determined to be 2.97 mm. The qualitative and quantitative results show promising segmentation accuracy reflecting the potential of the proposed method.
引用
收藏
页码:257 / 277
页数:20
相关论文
共 50 条
  • [21] A PCA-Based Approach for Gene Target Selection to Improve Industrial Strains
    Jonnalagadda, Sudhakar
    Srinivasan, Rajagopalan
    17TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2007, 24 : 1013 - 1018
  • [22] On PCA-based fault diagnosis techniques
    Yin, Shen
    Ding, Steven X.
    Naik, Amol
    Deng, Pengcheng
    Haghani, Adel
    2010 CONFERENCE ON CONTROL AND FAULT-TOLERANT SYSTEMS (SYSTOL'10), 2010, : 179 - 184
  • [23] PCA-BASED HUMAN POSTURE CLASSIFICATION
    Tahir, Nooritawati Md
    Hussain, Aini
    Samad, Salina Abdul
    Husain, Hafizah
    JURNAL TEKNOLOGI, 2007, 46
  • [24] A PCA-based Data Prediction Method
    Daugulis, Peteris
    Vagale, Vija
    Mancini, Emiliano
    Castiglione, Filippo
    BALTIC JOURNAL OF MODERN COMPUTING, 2022, 10 (01): : 1 - 16
  • [25] A PCA-Based Keypoint Tracking Approach to Automated Facial Expressions Encoding
    Tripathi, Shivansh Chandra
    Garg, Rahul
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2023, 2023, 14301 : 813 - 823
  • [26] A PCA-Based Approach for Structural Dynamics Model Updating with Interval Uncertainty
    Chen, Xueqian
    Shen, Zhanpeng
    Liu, Xin'en
    ACTA MECHANICA SOLIDA SINICA, 2019, 32 (01) : 105 - 119
  • [27] On a PCA-based lung motion model
    Li, Ruijiang
    Lewis, John H.
    Jia, Xun
    Zhao, Tianyu
    Liu, Weifeng
    Wuenschel, Sara
    Lamb, James
    Yang, Deshan
    Low, Daniel A.
    Jiang, Steve B.
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (18): : 6009 - 6030
  • [28] PCA-based dimension reduction for splines
    Van der Linde, A
    JOURNAL OF NONPARAMETRIC STATISTICS, 2003, 15 (01) : 77 - 92
  • [29] PCA-BASED ECG LEAD RECONSTRUCTION
    Mann, S.
    Orglmeister, R.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58
  • [30] PCA-based recognition for efficient inpainting
    Korah, T
    Rasmussen, C
    COMPUTER VISION - ACCV 2006, PT I, 2006, 3851 : 206 - 215