Theory of site-disordered magnets

被引:0
|
作者
T.M. Nieuwenhuizen
C.N.A. van Duin
机构
[1] University of Amsterdam,
[2] Van der Waals-Zeeman Institut,undefined
[3] Valckenierstraat 65-67,undefined
[4] 1018 XE Amsterdam,undefined
[5] The Netherlands,undefined
[6] Institute Lorentz for Theoretical Physics,undefined
[7] Leiden University,undefined
[8] P.O.B. 9506,undefined
[9] 2300 RA Leiden,undefined
[10] The Netherlands,undefined
关键词
PACS. 75.10.Nr Spin-glass and other random models - 75.30.Fv Spin-density waves - 75.50.Lk Spin glasses and other random magnets;
D O I
暂无
中图分类号
学科分类号
摘要
In realistic spinglasses, such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, magnetic atoms are located at random positions. Their couplings are determined by their relative positions. For such systems a field theory is formulated. In certain limits it reduces to the Hopfield model, the Sherrington-Kirkpatrick model, and the Viana-Bray model. The model has a percolation transition, while for RKKY couplings the “concentration scaling”\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} occurs. Within the Gaussian approximation the Ginzburg-Landau expansion is considered in the clusterglass phase, that is to say, for not too small concentrations. Near special points, the prefactor of the cubic term, or the one of the replica-symmetry-breaking quartic term, may go through zero. Around such points new spin glass phases are found.
引用
收藏
页码:191 / 209
页数:18
相关论文
共 50 条
  • [41] Frequency dependence of giant Shapiro steps in ordered and site-disordered proximity-coupled Josephson-junction arrays
    Ravindran, K
    Gomez, LB
    Li, RR
    Herbert, ST
    Lukens, P
    Jun, Y
    Elhamri, S
    Newrock, RS
    Mast, DB
    PHYSICAL REVIEW B, 1996, 53 (09): : 5141 - 5144
  • [42] Matrix mean-field theory for the paramagnetic susceptibility of disordered magnets
    Zhao, D
    Huber, DL
    PHYSICAL REVIEW B, 1996, 53 (21): : 14223 - 14227
  • [43] NEW EFFECTIVE-FIELD THEORY WITH CORRELATIONS - APPLICATION TO DISORDERED MAGNETS
    KANEYOSHI, T
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1985, 60 (01): : 35 - 47
  • [44] Irreversibilities in low-field magnetization of site-disordered Ni75Al25 -: art. no. 024410
    Semwal, A
    Kaul, SN
    PHYSICAL REVIEW B, 2003, 68 (02)
  • [45] Coexistence of ferromagnetism and spin glass freezing in the site-disordered kagome ferrite SrSn2Fe4O11
    Shlyk, Larysa
    Strobel, S.
    Farmer, B.
    De Long, L. E.
    Niewa, R.
    AIP ADVANCES, 2018, 8 (05)
  • [46] Dynamic elastic properties and magnetic susceptibility across the austenite-martensite transformation in site-disordered ferromagnetic Ni-Fe-Al alloy
    Mukhopadhyay, P. K.
    Kaul, S. N.
    APPLIED PHYSICS LETTERS, 2008, 92 (10)
  • [47] NMR DYNAMICS IN DISORDERED MAGNETS
    ORBACH, R
    HYPERFINE INTERACTIONS, 1989, 49 (1-4): : 325 - 334
  • [49] REPTATION AND HYSTERESIS IN DISORDERED MAGNETS
    LEVY, LP
    JOURNAL DE PHYSIQUE I, 1993, 3 (02): : 533 - 557
  • [50] FRACTAL MODEL FOR DISORDERED MAGNETS
    GAVOILLE, G
    HUBSCH, J
    PHYSICAL REVIEW B, 1988, 37 (01): : 321 - 323