Theory of site-disordered magnets

被引:0
|
作者
T.M. Nieuwenhuizen
C.N.A. van Duin
机构
[1] University of Amsterdam,
[2] Van der Waals-Zeeman Institut,undefined
[3] Valckenierstraat 65-67,undefined
[4] 1018 XE Amsterdam,undefined
[5] The Netherlands,undefined
[6] Institute Lorentz for Theoretical Physics,undefined
[7] Leiden University,undefined
[8] P.O.B. 9506,undefined
[9] 2300 RA Leiden,undefined
[10] The Netherlands,undefined
关键词
PACS. 75.10.Nr Spin-glass and other random models - 75.30.Fv Spin-density waves - 75.50.Lk Spin glasses and other random magnets;
D O I
暂无
中图分类号
学科分类号
摘要
In realistic spinglasses, such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, magnetic atoms are located at random positions. Their couplings are determined by their relative positions. For such systems a field theory is formulated. In certain limits it reduces to the Hopfield model, the Sherrington-Kirkpatrick model, and the Viana-Bray model. The model has a percolation transition, while for RKKY couplings the “concentration scaling”\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} occurs. Within the Gaussian approximation the Ginzburg-Landau expansion is considered in the clusterglass phase, that is to say, for not too small concentrations. Near special points, the prefactor of the cubic term, or the one of the replica-symmetry-breaking quartic term, may go through zero. Around such points new spin glass phases are found.
引用
收藏
页码:191 / 209
页数:18
相关论文
共 50 条
  • [11] BEHAVIOR OF THE EFFECTIVE SUSCEPTIBILITY EXPONENT IN SITE-DISORDERED FERROMAGNETS
    FAHNLE, M
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (01): : 181 - 190
  • [12] EFFECTIVE-MEDIUM THEORIES FOR SITE-DISORDERED LATTICE SYSTEMS
    BERNASCONI, J
    WIESMANN, HJ
    HELVETICA PHYSICA ACTA, 1975, 48 (04): : 536 - 536
  • [13] HOPPING TRANSPORT ON SITE-DISORDERED D-DIMENSIONAL LATTICES
    KUNDU, K
    PHILLIPS, P
    PHYSICAL REVIEW A, 1987, 35 (02) : 857 - 865
  • [14] EFFECTIVE-MEDIUM THEORIES FOR SITE-DISORDERED RESISTANCE NETWORKS
    BERNASCONI, J
    WIESMANN, HJ
    PHYSICAL REVIEW B, 1976, 13 (03): : 1131 - 1139
  • [15] AC CONDUCTIVITY OF A ONE-DIMENSIONAL SITE-DISORDERED LATTICE
    ALBERS, RC
    GUBERNATIS, JE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (03): : 414 - 414
  • [16] AC CONDUCTIVITY OF A ONE-DIMENSIONAL SITE-DISORDERED LATTICE
    ALBERS, RC
    GUBERNATIS, JE
    PHYSICAL REVIEW B, 1978, 17 (12): : 4487 - 4494
  • [17] RANDOM-FIELD EFFECTS IN SITE-DISORDERED ISING ANTIFERROMAGNETS
    CARDY, JL
    PHYSICAL REVIEW B, 1984, 29 (01): : 505 - 507
  • [18] GENERALIZED COHERENT-POTENTIAL APPROXIMATION FOR SITE-DISORDERED SPIN SYSTEMS
    LAGE, EJS
    STINCHCOMBE, RB
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (02): : 295 - 312
  • [19] Magnetic ordering in the three-dimensional site-disordered Heisenberg model
    Nielsen, M
    Ryan, DH
    Guo, H
    Zuckermann, M
    PHYSICAL REVIEW B, 1996, 53 (01): : 343 - 349
  • [20] ON THE THEORY OF MULTICOMPONENT DISORDERED MAGNETS
    VAKARCHUK, IA
    MARGOLYCH, IF
    THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (03) : 1006 - 1016