Theory of site-disordered magnets

被引:0
|
作者
T.M. Nieuwenhuizen
C.N.A. van Duin
机构
[1] University of Amsterdam,
[2] Van der Waals-Zeeman Institut,undefined
[3] Valckenierstraat 65-67,undefined
[4] 1018 XE Amsterdam,undefined
[5] The Netherlands,undefined
[6] Institute Lorentz for Theoretical Physics,undefined
[7] Leiden University,undefined
[8] P.O.B. 9506,undefined
[9] 2300 RA Leiden,undefined
[10] The Netherlands,undefined
关键词
PACS. 75.10.Nr Spin-glass and other random models - 75.30.Fv Spin-density waves - 75.50.Lk Spin glasses and other random magnets;
D O I
暂无
中图分类号
学科分类号
摘要
In realistic spinglasses, such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, magnetic atoms are located at random positions. Their couplings are determined by their relative positions. For such systems a field theory is formulated. In certain limits it reduces to the Hopfield model, the Sherrington-Kirkpatrick model, and the Viana-Bray model. The model has a percolation transition, while for RKKY couplings the “concentration scaling”\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} occurs. Within the Gaussian approximation the Ginzburg-Landau expansion is considered in the clusterglass phase, that is to say, for not too small concentrations. Near special points, the prefactor of the cubic term, or the one of the replica-symmetry-breaking quartic term, may go through zero. Around such points new spin glass phases are found.
引用
收藏
页码:191 / 209
页数:18
相关论文
共 50 条
  • [1] Theory of site-disordered magnets
    Nieuwenhuizen, TM
    van Duin, CNA
    EUROPEAN PHYSICAL JOURNAL B, 1999, 7 (02): : 191 - 209
  • [2] A THEORY OF THE EFFECTIVE CONDUCTIVITY IN SITE-DISORDERED RESISTOR NETWORKS
    NAGATANI, T
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (29): : 5987 - 5997
  • [3] Site-disordered glassy systems
    Klopper, AV
    Stamps, RL
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : 1310 - 1311
  • [4] FIELD-THEORY FOR SITE-DISORDERED SPIN-GLASSES
    NIEUWENHUIZEN, TM
    EUROPHYSICS LETTERS, 1993, 24 (09): : 797 - 802
  • [5] Field theory for finite-dimensional site-disordered spin systems
    Dean, David S.
    Lancaster, David
    Physical Review Letters, 1996, 77 (14):
  • [6] A field theory for finite-dimensional site-disordered spin systems
    Dean, DS
    Lancaster, D
    PHYSICAL REVIEW LETTERS, 1996, 77 (14) : 3037 - 3040
  • [7] Fluctuations in the site-disordered traveling salesman problem
    Dean, David S.
    Lancaster, David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (46) : 13837 - 13857
  • [8] HOPPING DISPERSIVE TRANSPORT IN SITE-DISORDERED SYSTEMS
    CHEKUNAEV, NI
    FLEUROV, VN
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (16): : 2917 - 2931
  • [9] Phonon dynamics in the site-disordered Kitaev spin liquid
    Dantas, Vitor
    Kao, Wen-Han
    Perkins, Natalia B.
    PHYSICAL REVIEW B, 2024, 110 (10)
  • [10] Site-disordered spin systems in the Gaussian variational approximation
    Dean, DS
    Lancaster, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01): : 37 - 62