On integral points of some Fano threefolds and their Hilbert schemes of lines and conics

被引:0
|
作者
Pietro Corvaja
Francesco Zucconi
机构
[1] Università degli studi di Udine,D.M.I.F.
关键词
Integral points; Potential density; Log Fano threefolds; Log Calabi Yau threefolds;
D O I
暂无
中图分类号
学科分类号
摘要
We prove some density results for integral points on affine open sets of Fano threefolds. For instance, let Xo=P3\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^o=\mathbb P^3{\setminus } D$$\end{document} where D is the union of two quadrics such that their intersection contains a smooth conic, or the union of a smooth quadric surface and two planes, or the union of a smooth cubic surface V and a plane Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi $$\end{document} such that the intersection V∩Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\cap \Pi $$\end{document} contains a line. In all these cases we show that the set of integral points of Xo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^o$$\end{document} is potentially dense. We apply the above results to prove that integral points are potentially dense in some log-Fano or in some log-Calabi-Yau threefold.
引用
收藏
页码:3107 / 3135
页数:28
相关论文
共 50 条
  • [31] THE FAT LOCUS OF HILBERT SCHEMES OF POINTS
    COPPENS, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) : 777 - 783
  • [32] Elementary components of Hilbert schemes of points
    Jelisiejew, Joachim
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 100 (01): : 249 - 272
  • [33] THE GEOMETRY OF DEGENERATIONS OF HILBERT SCHEMES OF POINTS
    Gulbrandsen, Martin G.
    Halle, Lars H.
    Hulek, Klaus
    Zhang, Ziyu
    JOURNAL OF ALGEBRAIC GEOMETRY, 2021, 30 (01) : 1 - 56
  • [34] SEGRE CLASSES AND HILBERT SCHEMES OF POINTS
    Marian, Alina
    Oprea, Dragos
    Pandharipande, Rahul
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2017, 50 (01): : 239 - 267
  • [35] Hilbert schemes of points and Heisenberg algebras
    Ellingsrud, G
    Göttsche, L
    MODULI SPACES IN ALGEBRAIC GEOMETRY, 2000, 1 : 59 - +
  • [36] Sklyanin algebras and Hilbert schemes of points
    Nevins, T. A.
    Stafford, J. T.
    ADVANCES IN MATHEMATICS, 2007, 210 (02) : 405 - 478
  • [37] On the smoothness of lexicographic points on Hilbert schemes
    Ramkumar, Ritvik
    Sammartano, Alessio
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (03)
  • [38] MULTIPLE POINTS, CHAINING AND HILBERT SCHEMES
    GAFFNEY, T
    AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (04) : 595 - 628
  • [39] TAUTOLOGICAL SHEAVES ON HILBERT SCHEMES OF POINTS
    Wang, Zhilan
    Zhou, Jian
    JOURNAL OF ALGEBRAIC GEOMETRY, 2014, 23 (04) : 669 - 692
  • [40] AUTOMORPHISMS OF HILBERT SCHEMES OF POINTS ON SURFACES
    Belmans, Pieter
    Oberdieck, Georg
    Rennemo, Jorgen Vold
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (09) : 6139 - 6156