On integral points of some Fano threefolds and their Hilbert schemes of lines and conics

被引:0
|
作者
Pietro Corvaja
Francesco Zucconi
机构
[1] Università degli studi di Udine,D.M.I.F.
关键词
Integral points; Potential density; Log Fano threefolds; Log Calabi Yau threefolds;
D O I
暂无
中图分类号
学科分类号
摘要
We prove some density results for integral points on affine open sets of Fano threefolds. For instance, let Xo=P3\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^o=\mathbb P^3{\setminus } D$$\end{document} where D is the union of two quadrics such that their intersection contains a smooth conic, or the union of a smooth quadric surface and two planes, or the union of a smooth cubic surface V and a plane Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi $$\end{document} such that the intersection V∩Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\cap \Pi $$\end{document} contains a line. In all these cases we show that the set of integral points of Xo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^o$$\end{document} is potentially dense. We apply the above results to prove that integral points are potentially dense in some log-Fano or in some log-Calabi-Yau threefold.
引用
收藏
页码:3107 / 3135
页数:28
相关论文
共 50 条