On integral points of some Fano threefolds and their Hilbert schemes of lines and conics

被引:0
|
作者
Pietro Corvaja
Francesco Zucconi
机构
[1] Università degli studi di Udine,D.M.I.F.
关键词
Integral points; Potential density; Log Fano threefolds; Log Calabi Yau threefolds;
D O I
暂无
中图分类号
学科分类号
摘要
We prove some density results for integral points on affine open sets of Fano threefolds. For instance, let Xo=P3\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^o=\mathbb P^3{\setminus } D$$\end{document} where D is the union of two quadrics such that their intersection contains a smooth conic, or the union of a smooth quadric surface and two planes, or the union of a smooth cubic surface V and a plane Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi $$\end{document} such that the intersection V∩Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\cap \Pi $$\end{document} contains a line. In all these cases we show that the set of integral points of Xo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^o$$\end{document} is potentially dense. We apply the above results to prove that integral points are potentially dense in some log-Fano or in some log-Calabi-Yau threefold.
引用
收藏
页码:3107 / 3135
页数:28
相关论文
共 50 条
  • [1] On integral points of some Fano threefolds and their Hilbert schemes of lines and conics
    Corvaja, Pietro
    Zucconi, Francesco
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (06) : 3107 - 3135
  • [2] Hilbert schemes of lines and conics and automorphism groups of Fano threefolds
    Kuznetsov, Alexander G.
    Prokhorov, Yuri G.
    Shramov, Constantin A.
    JAPANESE JOURNAL OF MATHEMATICS, 2018, 13 (01): : 109 - 185
  • [3] Hilbert schemes of lines and conics and automorphism groups of Fano threefolds
    Alexander G. Kuznetsov
    Yuri G. Prokhorov
    Constantin A. Shramov
    Japanese Journal of Mathematics, 2018, 13 : 109 - 185
  • [4] Hilbert schemes and toric degenerations for low degree Fano threefolds
    Christophersen, Jan Arthur
    Ilten, Nathan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 717 : 77 - 100
  • [5] Symmetric obstruction theories and Hilbert schemes of points on threefolds
    Behrend, Kai
    Fantechi, Barbara
    ALGEBRA & NUMBER THEORY, 2008, 2 (03) : 313 - 345
  • [6] Integral cohomology of Hilbert schemes of points on surfaces
    Li, Wei-Ping
    Qin, Zhenbo
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2008, 16 (05) : 969 - 988
  • [7] Hilbert schemes of points on integral plane curves
    Princeton University
  • [8] Triangulation of points, lines and conics
    Josephson, Klas
    Kahl, Fredrik
    IMAGE ANALYSIS, PROCEEDINGS, 2007, 4522 : 162 - +
  • [9] Triangulation of Points, Lines and Conics
    Klas Josephson
    Fredrik Kahl
    Journal of Mathematical Imaging and Vision, 2008, 32 : 215 - 225
  • [10] Triangulation of points, lines and conics
    Josephson, Klas
    Kahl, Fredrik
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 32 (02) : 215 - 225