Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk

被引:0
|
作者
Yakir A. Reshef
Hilary K. Finucane
David R. Kelley
Alexander Gusev
Dylan Kotliar
Jacob C. Ulirsch
Farhad Hormozdiari
Joseph Nasser
Luke O’Connor
Bryce van de Geijn
Po-Ru Loh
Sharon R. Grossman
Gaurav Bhatia
Steven Gazal
Pier Francesco Palamara
Luca Pinello
Nick Patterson
Ryan P. Adams
Alkes L Price
机构
[1] Harvard University,Department of Computer Science
[2] Harvard/MIT MD/PhD Program,Department of Epidemiology
[3] Broad Institute of MIT and Harvard,Program in Bioinformatics and Integrative Genomics
[4] California Life Sciences LLC,Division of Genetics, Department of Medicine
[5] Dana Farber Cancer Institute,Department of Statistics
[6] Boston Children’s Hospital,Department of Pathology
[7] Harvard T.H. Chan School of Public Health,Department of Computer Science
[8] Harvard University,Department of Biostatistics
[9] Brigham and Women’s Hospital and Harvard Medical School,undefined
[10] University of Oxford,undefined
[11] Massachusetts General Hospital,undefined
[12] Harvard Medical School,undefined
[13] Google Brain,undefined
[14] Princeton University,undefined
[15] Harvard T.H. Chan School of Public Health,undefined
来源
Nature Genetics | 2018年 / 50卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Biological interpretation of genome-wide association study data frequently involves assessing whether SNPs linked to a biological process, for example, binding of a transcription factor, show unsigned enrichment for disease signal. However, signed annotations quantifying whether each SNP allele promotes or hinders the biological process can enable stronger statements about disease mechanism. We introduce a method, signed linkage disequilibrium profile regression, for detecting genome-wide directional effects of signed functional annotations on disease risk. We validate the method via simulations and application to molecular quantitative trait loci in blood, recovering known transcriptional regulators. We apply the method to expression quantitative trait loci in 48 Genotype-Tissue Expression tissues, identifying 651 transcription factor-tissue associations including 30 with robust evidence of tissue specificity. We apply the method to 46 diseases and complex traits (average n = 290 K), identifying 77 annotation-trait associations representing 12 independent transcription factor-trait associations, and characterize the underlying transcriptional programs using gene-set enrichment analyses. Our results implicate new causal disease genes and new disease mechanisms.
引用
收藏
页码:1483 / 1493
页数:10
相关论文
共 50 条
  • [41] Genome-wide transcription factor binding site/promoter databases for the analysis of gene sets and co-occurrence of transcription factor binding motifs
    Srinivas Veerla
    Markus Ringnér
    Mattias Höglund
    BMC Genomics, 11
  • [42] Genome-wide polygenic risk score for retinopathy of type 2 diabetes
    Forrest, Iain S.
    Chaudhary, Kumardeep
    Paranjpe, Ishan
    Vy, Ha My T.
    Marquez-Luna, Carla
    Rocheleau, Ghislain
    Saha, Aparna
    Chan, Lili
    Van Vleck, Tielman
    Loos, Ruth J. F.
    Cho, Judy
    Pasquale, Louis R.
    Nadkarni, Girish N.
    Do, Ron
    HUMAN MOLECULAR GENETICS, 2021, 30 (10) : 952 - 960
  • [43] Genome-Wide Identification of Transcription Start Sites, Promoters and Transcription Factor Binding Sites in E. coli
    Mendoza-Vargas, Alfredo
    Olvera, Leticia
    Olvera, Maricela
    Grande, Ricardo
    Vega-Alvarado, Leticia
    Taboada, Blanca
    Jimenez-Jacinto, Veronica
    Salgado, Heladia
    Juarez, Katy
    Contreras-Moreira, Bruno
    Huerta, Araceli M.
    Collado-Vides, Julio
    Morett, Enrique
    PLOS ONE, 2009, 4 (10):
  • [44] Transethnic Transferability of a Genome-Wide Polygenic Score for Coronary Artery Disease
    Fahed, Akl C.
    Aragam, Krishna G.
    Hindy, George
    Chen, Yii-Der Ida
    Chaudhary, Kumardeep
    Dobbyn, Amanda
    Krumholz, Harlan M.
    Sheu, Wayne H. H.
    Rich, Stephen S.
    Rotter, Jerome I.
    Chowdhury, Rajiv
    Cho, Judy
    Do, Ron
    Ellinor, Patrick T.
    Kathiresan, Sekar
    Khera, Amit V.
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2021, 14 (01): : E003092
  • [45] Predicting conformational ensembles and genome-wide transcription factor binding sites from DNA sequences
    Munazah Andrabi
    Andrew Paul Hutchins
    Diego Miranda-Saavedra
    Hidetoshi Kono
    Ruth Nussinov
    Kenji Mizuguchi
    Shandar Ahmad
    Scientific Reports, 7
  • [46] From genome-wide association studies (GWAS) to genome-wide polygenic scores (GPS)
    Jordan, Bertrand
    M S-MEDECINE SCIENCES, 2018, 34 (12): : 1116 - 1119
  • [47] Genome-Wide Profiling of Transcription Factor Binding and Epigenetic Marks in Adipocytes by ChIP-seq
    Nielsen, Ronni
    Mandrup, Susanne
    METHODS OF ADIPOSE TISSUE BIOLOGY, PT A, 2014, 537 : 261 - 279
  • [48] Mapping genome-wide transcription-factor binding sites using DAP-seq
    Anna Bartlett
    Ronan C O'Malley
    Shao-shan Carol Huang
    Mary Galli
    Joseph R Nery
    Andrea Gallavotti
    Joseph R Ecker
    Nature Protocols, 2017, 12 : 1659 - 1672
  • [49] Genome-Wide Transcription Factor DNA Binding Sites and Gene Regulatory Networks in Clostridium thermocellum
    Hebdon, Skyler D.
    Gerritsen, Alida T.
    Chen, Yi-Pei
    Marcano, Joan G.
    Chou, Katherine J.
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [50] Genome-wide insights into selection signatures for transcription factor binding sites in cattle ROH regions
    Nayak, Sonali Sonejita
    Panigrahi, Manjit
    Dutt, Triveni
    MAMMALIAN GENOME, 2025,