Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk

被引:0
|
作者
Yakir A. Reshef
Hilary K. Finucane
David R. Kelley
Alexander Gusev
Dylan Kotliar
Jacob C. Ulirsch
Farhad Hormozdiari
Joseph Nasser
Luke O’Connor
Bryce van de Geijn
Po-Ru Loh
Sharon R. Grossman
Gaurav Bhatia
Steven Gazal
Pier Francesco Palamara
Luca Pinello
Nick Patterson
Ryan P. Adams
Alkes L Price
机构
[1] Harvard University,Department of Computer Science
[2] Harvard/MIT MD/PhD Program,Department of Epidemiology
[3] Broad Institute of MIT and Harvard,Program in Bioinformatics and Integrative Genomics
[4] California Life Sciences LLC,Division of Genetics, Department of Medicine
[5] Dana Farber Cancer Institute,Department of Statistics
[6] Boston Children’s Hospital,Department of Pathology
[7] Harvard T.H. Chan School of Public Health,Department of Computer Science
[8] Harvard University,Department of Biostatistics
[9] Brigham and Women’s Hospital and Harvard Medical School,undefined
[10] University of Oxford,undefined
[11] Massachusetts General Hospital,undefined
[12] Harvard Medical School,undefined
[13] Google Brain,undefined
[14] Princeton University,undefined
[15] Harvard T.H. Chan School of Public Health,undefined
来源
Nature Genetics | 2018年 / 50卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Biological interpretation of genome-wide association study data frequently involves assessing whether SNPs linked to a biological process, for example, binding of a transcription factor, show unsigned enrichment for disease signal. However, signed annotations quantifying whether each SNP allele promotes or hinders the biological process can enable stronger statements about disease mechanism. We introduce a method, signed linkage disequilibrium profile regression, for detecting genome-wide directional effects of signed functional annotations on disease risk. We validate the method via simulations and application to molecular quantitative trait loci in blood, recovering known transcriptional regulators. We apply the method to expression quantitative trait loci in 48 Genotype-Tissue Expression tissues, identifying 651 transcription factor-tissue associations including 30 with robust evidence of tissue specificity. We apply the method to 46 diseases and complex traits (average n = 290 K), identifying 77 annotation-trait associations representing 12 independent transcription factor-trait associations, and characterize the underlying transcriptional programs using gene-set enrichment analyses. Our results implicate new causal disease genes and new disease mechanisms.
引用
收藏
页码:1483 / 1493
页数:10
相关论文
共 50 条
  • [31] Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated
    Mun-Kit Choy
    Mehregan Movassagh
    Hock-Guan Goh
    Martin R Bennett
    Thomas A Down
    Roger SY Foo
    BMC Genomics, 11
  • [32] Prediction of genome-wide effects of single nucleotide variants on transcription factor binding (vol 10, 17632, 2020)
    Pro, Sebastian Carrasco
    Bulekova, Katia
    Gregor, Brian
    Labadorf, Adam
    Bass, Juan Ignacio Fuxman
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [33] A genome-wide and nonredundant mouse transcription factor database
    Kanamori, M
    Konno, H
    Osato, N
    Kawai, J
    Hayashizaki, Y
    Suzuki, H
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 322 (03) : 787 - 793
  • [34] Improved prediction of fracture risk leveraging a genome-wide polygenic risk score
    Tianyuan Lu
    Vincenzo Forgetta
    Julyan Keller-Baruch
    Maria Nethander
    Derrick Bennett
    Marie Forest
    Sahir Bhatnagar
    Robin G. Walters
    Kuang Lin
    Zhengming Chen
    Liming Li
    Magnus Karlsson
    Dan Mellström
    Eric Orwoll
    Eugene V. McCloskey
    John A. Kanis
    William D. Leslie
    Robert J. Clarke
    Claes Ohlsson
    Celia M. T. Greenwood
    J. Brent Richards
    Genome Medicine, 13
  • [35] Genome-wide polygenic risk scores predict risk of glioma and molecular subtypes
    Nakase, Taishi
    Guerra, Geno A.
    Ostrom, Quinn T.
    Ge, Tian
    Melin, Beatrice S.
    Wrensch, Margaret
    Wiencke, John K.
    Jenkins, Robert B.
    Eckel-Passow, Jeanette E.
    Bondy, Melissa L.
    Francis, Stephen S.
    Kachuri, Linda
    NEURO-ONCOLOGY, 2024, 26 (10) : 1933 - 1944
  • [36] Improved prediction of fracture risk leveraging a genome-wide polygenic risk score
    Lu, Tianyuan
    Forgetta, Vincenzo
    Keller-Baruch, Julyan
    Nethander, Maria
    Bennett, Derrick
    Forest, Marie
    Bhatnagar, Sahir
    Walters, Robin G.
    Lin, Kuang
    Chen, Zhengming
    Li, Liming
    Karlsson, Magnus
    Mellstrom, Dan
    Orwoll, Eric
    McCloskey, Eugene V.
    Kanis, John A.
    Leslie, William D.
    Clarke, Robert J.
    Ohlsson, Claes
    Greenwood, Celia M. T.
    Richards, J. Brent
    GENOME MEDICINE, 2021, 13 (01)
  • [37] Improved prediction of fracture risk leveraging a genome-wide polygenic risk score
    Lu, Tianyuan
    Forgetta, Vincenzo
    Keller-Baruch, Julyan
    Nethander, Maria
    Bennett, Derrick
    Forest, Marie
    Bhatnagar, Sahir
    Walters, Robin
    Lin, Kuang
    Chen, Zhengming
    Li, Liming
    Karlsson, Magnus
    Mellstrom, Dan
    Orwoll, Eric
    McCloskey, Eugene
    Kanis, John
    Leslie, William
    Clarke, Robert
    Ohlsson, Claes
    Greenwood, Celia
    Richards, Brent
    JOURNAL OF BONE AND MINERAL RESEARCH, 2020, 35 : 134 - 134
  • [38] Genome-wide analysis of the transcription factor binding preference of human bi-directional promoters and functional annotation of related gene pairs
    Liu, Bingchuan
    Chen, Jiajia
    Shen, Bairong
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [39] Contribution of Genome-Wide Polygenic Score to Risk of Coronary Artery Disease in Childhood Cancer Survivors
    Sapkota, Yadav
    Liu, Qi
    Li, Nan
    Bhatt, Neel S.
    Ehrhardt, Matthew J.
    Wilson, Carmen L.
    Wang, Zhaoming
    Jefferies, John L.
    Zhang, Jinghui
    Armstrong, Gregory T.
    Hudson, Melissa M.
    Robison, Leslie L.
    Mulrooney, Daniel A.
    Yasui, Yutaka
    JACC: CARDIOONCOLOGY, 2021, 4 (02): : 258 - 267
  • [40] Genome-wide transcription factor binding site/promoter databases for the analysis of gene sets and co-occurrence of transcription factor binding motifs
    Veerla, Srinivas
    Ringner, Markus
    Hoglund, Mattias
    BMC GENOMICS, 2010, 11 : 145