Interval estimation of the tail index of a GARCH(1,1) model

被引:0
|
作者
Ngai Hang Chan
Liang Peng
Rongmao Zhang
机构
[1] Chinese University of Hong Kong,Department of Statistics
[2] Georgia Institute of Technology,School of Mathematics
[3] Zhejiang University,Department of Mathematics
来源
TEST | 2012年 / 21卷
关键词
Empirical likelihood; GARCH model; Tail index; 62M10; 62E20; 60F17;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the tail index of a GARCH model is determined by a moment equation, which involves the underlying unknown parameters of the model. A tail index estimator can therefore be constructed by solving the sample moment equation with the unknown parameters being replaced by its quasi-maximum likelihood estimates (QMLE). To construct a confidence interval for the tail index, one needs to estimate the non-trivial asymptotic variance of the QMLE. In this paper, an empirical likelihood method is proposed for interval estimation of the tail index. One advantage of the proposed method is that interval estimation can still be achieved without having to estimate the complicated asymptotic variance. A simulation study confirms the advantage of the proposed method.
引用
收藏
页码:546 / 565
页数:19
相关论文
共 50 条
  • [41] The GARCH(1,1)-M model: results for the densities of the variance and the mean
    De Schepper, A
    Goovaerts, MJ
    INSURANCE MATHEMATICS & ECONOMICS, 1999, 24 (1-2): : 83 - 94
  • [42] COMPONENTWISE DIFFERENT TAIL SOLUTIONS FOR BIVARIATE STOCHASTIC RECURRENCE EQUATIONS WITH APPLICATION TO GARCH(1,1) PROCESSES
    Damek, Ewa
    Matsui, Muneya
    Swiatkowski, Witold
    COLLOQUIUM MATHEMATICUM, 2019, 155 (02) : 227 - 254
  • [43] The log-periodic-AR(1)-GARCH(1,1) model for financial crashes
    Gazola, L.
    Fernandes, C.
    Pizzinga, A.
    Riera, R.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 61 (03): : 355 - 362
  • [44] The log-periodic-AR(1)-GARCH(1,1) model for financial crashes
    L. Gazola
    C. Fernandes
    A. Pizzinga
    R. Riera
    The European Physical Journal B, 2008, 61 : 355 - 362
  • [45] Pseudo maximum-likelihood estimation of the univariate GARCH (1,1) and asymptotic properties
    Kouassi, Eugene
    Soh, Patrice Takam
    Brou, Jean Marcelin Bosson
    Ndoumbe, Emile Herve
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (20) : 10253 - 10271
  • [46] Is Beta-t-EGARCH(1,1) superior to GARCH(1,1)?
    Blazsek, Szabolcs
    Villatoro, Marco
    APPLIED ECONOMICS, 2015, 47 (17) : 1764 - 1774
  • [47] MCMC Estimation of the COGARCH(1,1) Model
    Mueller, Gernot
    JOURNAL OF FINANCIAL ECONOMETRICS, 2010, 8 (04) : 481 - 510
  • [48] ESTIMATION OF A SEMIPARAMETRIC IGARCH(1,1) MODEL
    Kim, Woocheol
    Linton, Oliver
    ECONOMETRIC THEORY, 2011, 27 (03) : 639 - 661
  • [49] The pitfalls in fitting GARCH(1,1) processes
    Zumbach, G
    ADVANCES IN QUANTITATIVE ASSET MANAGEMENT, 2000, 1 : 179 - 200
  • [50] A multiple regime extension to the Heston-Nandi GARCH(1,1) model
    Diaz-Hernandez, Adan
    Constantinou, Nick
    JOURNAL OF EMPIRICAL FINANCE, 2019, 53 : 162 - 180