Interval estimation of the tail index of a GARCH(1,1) model

被引:0
|
作者
Ngai Hang Chan
Liang Peng
Rongmao Zhang
机构
[1] Chinese University of Hong Kong,Department of Statistics
[2] Georgia Institute of Technology,School of Mathematics
[3] Zhejiang University,Department of Mathematics
来源
TEST | 2012年 / 21卷
关键词
Empirical likelihood; GARCH model; Tail index; 62M10; 62E20; 60F17;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the tail index of a GARCH model is determined by a moment equation, which involves the underlying unknown parameters of the model. A tail index estimator can therefore be constructed by solving the sample moment equation with the unknown parameters being replaced by its quasi-maximum likelihood estimates (QMLE). To construct a confidence interval for the tail index, one needs to estimate the non-trivial asymptotic variance of the QMLE. In this paper, an empirical likelihood method is proposed for interval estimation of the tail index. One advantage of the proposed method is that interval estimation can still be achieved without having to estimate the complicated asymptotic variance. A simulation study confirms the advantage of the proposed method.
引用
收藏
页码:546 / 565
页数:19
相关论文
共 50 条
  • [21] Quasi-maximum exponential likelihood estimation for a non stationary GARCH(1,1) model
    Pan, Baoguo
    Chen, Min
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (04) : 1000 - 1013
  • [22] On the tail behaviors of Box-Cox transformed threshold GARCH(1,1) process
    Liu, JC
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (13) : 1323 - 1330
  • [23] GUARANTEED ESTIMATION OF PARAMETERS AND FAULT DETECTION IN GARCH(1,1) PROCESS
    Vorobejchikov, Sergey
    Sergeeva, Katerina
    ELECTRICAL AND CONTROL TECHNOLOGIES, 2011, : 71 - 75
  • [24] GARCH(1,1) Model of the Financial Market with the Minkowski Metric
    Pincak, Richard
    Kanjamapornkul, Kabin
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (08): : 669 - 684
  • [25] A closed-form estimator for the GARCH(1,1) model
    Kristensen, D
    Linton, O
    ECONOMETRIC THEORY, 2006, 22 (02) : 323 - 337
  • [26] An empirical study on technical analysis: GARCH (1,1) model
    Chen, Show-Lin
    Chen, Nen-Jing
    Chuang, Rwei-Ju
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (04) : 785 - 801
  • [27] News augmented GARCH(1,1) model for volatility prediction
    Sadik, Zryan A.
    Date, Paresh M.
    Mitra, Gautam
    IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2019, 30 (02) : 165 - 185
  • [28] Periodic integer-valued GARCH(1,1) model
    Bentarzi, Mohamed
    Bentarzi, Wissam
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 1167 - 1188
  • [29] Structural change and estimated persistence in the GARCH(1,1)-model
    Kraemer, Walter
    Azamo, Baudouin Tameze
    ECONOMICS LETTERS, 2007, 97 (01) : 17 - 23
  • [30] Estimation of a utility-based asset pricing model using normal mixture GARCH(1,1)
    Wu, C. C.
    Lee, Jack C.
    ECONOMIC MODELLING, 2007, 24 (02) : 329 - 349