Interval estimation of the tail index of a GARCH(1,1) model

被引:0
|
作者
Ngai Hang Chan
Liang Peng
Rongmao Zhang
机构
[1] Chinese University of Hong Kong,Department of Statistics
[2] Georgia Institute of Technology,School of Mathematics
[3] Zhejiang University,Department of Mathematics
来源
TEST | 2012年 / 21卷
关键词
Empirical likelihood; GARCH model; Tail index; 62M10; 62E20; 60F17;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the tail index of a GARCH model is determined by a moment equation, which involves the underlying unknown parameters of the model. A tail index estimator can therefore be constructed by solving the sample moment equation with the unknown parameters being replaced by its quasi-maximum likelihood estimates (QMLE). To construct a confidence interval for the tail index, one needs to estimate the non-trivial asymptotic variance of the QMLE. In this paper, an empirical likelihood method is proposed for interval estimation of the tail index. One advantage of the proposed method is that interval estimation can still be achieved without having to estimate the complicated asymptotic variance. A simulation study confirms the advantage of the proposed method.
引用
收藏
页码:546 / 565
页数:19
相关论文
共 50 条
  • [1] Interval estimation of the tail index of a GARCH(1,1) model
    Chan, Ngai Hang
    Peng, Liang
    Zhang, Rongmao
    TEST, 2012, 21 (03) : 546 - 565
  • [2] Inference for the tail index of a GARCH(1,1) model and an AR(1) model with ARCH(1) errors
    Zhang, Rongmao
    Li, Chenxue
    Peng, Liang
    ECONOMETRIC REVIEWS, 2019, 38 (02) : 151 - 169
  • [3] TAIL RISK MONOTONICITY IN GARCH(1,1) MODELS
    Glasserman, Paul
    Pirjol, Dan
    Wu, Qi
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2024, 27 (03N04)
  • [4] The extremal index for GARCH(1,1) processes
    Laurini, Fabrizio
    Tawn, Jonathan A.
    EXTREMES, 2012, 15 (04) : 511 - 529
  • [5] On the tvGARCH(1,1) model: Existence, CLT, and tail index
    D. Ambroževičiūtė
    A. Klivečka
    Lithuanian Mathematical Journal, 2008, 48 : 1 - 16
  • [6] On the tvGARCH(1,1) model: Existence, CLT, and tail index
    Ambrozeviciute, D.
    Klivecka, A.
    LITHUANIAN MATHEMATICAL JOURNAL, 2008, 48 (01) : 1 - 16
  • [7] Empirical processes in the GARCH(1,1)-model and robust estimation of parameters
    Vyazilov, AE
    RUSSIAN MATHEMATICAL SURVEYS, 2001, 56 (05) : 990 - 991
  • [8] Whittle estimation in a heavy-tailed GARCH(1,1) model
    Mikosch, T
    Straumann, D
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 100 : 187 - 222
  • [9] Coupled GARCH(1,1) model
    Nie, Huasheng
    Waelbroeck, Henri
    QUANTITATIVE FINANCE, 2023, 23 (05) : 759 - 776
  • [10] Coupled GARCH(1,1) model
    Nie, Huasheng
    Waelbroeck, Henri
    QUANTITATIVE FINANCE, 2021,