Heat Kernel and Green Function Estimates on Noncompact Symmetric Spaces

被引:0
|
作者
J.-P. Anker
L. Ji
机构
[1] Inst. de Math. Elie Cartan (Laboratoire Commun UHP-CNRS-INRIA),
[2] Université Henri Poincaré (Nancy I),undefined
[3] B.P. 239,undefined
[4] F-54506 Vandoeuvre-lès-Nancy Cedex,undefined
[5] France,undefined
[6] e-mail: anker@iecn.u-nancy.fr,undefined
[7] Dept. of Math.,undefined
[8] University of Michigan,undefined
[9] East Hall,undefined
[10] 525 East University Avenue,undefined
[11] Ann Arbor,undefined
[12] MI 48109-1109,undefined
[13] USA,undefined
[14] e-mail: lji@math.lsa.umich.edu,undefined
来源
关键词
Green Function; Symmetric Space; Function Estimate; Heat Kernel; Noncompact Symmetric Space;
D O I
暂无
中图分类号
学科分类号
摘要
((Without Abstract)).
引用
收藏
页码:1035 / 1091
页数:56
相关论文
共 50 条
  • [41] Factorization Theorems on Symmetric Spaces of Noncompact Type
    Piotr Graczyk
    Journal of Theoretical Probability, 1999, 12 : 375 - 383
  • [42] Factorization theorems on symmetric spaces of noncompact type
    Graczyk, P
    JOURNAL OF THEORETICAL PROBABILITY, 1999, 12 (02) : 375 - 383
  • [43] L(p) multipliers on noncompact symmetric spaces
    Giulini, S
    Mauceri, G
    Meda, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 482 : 151 - 175
  • [44] Submanifold geometry in symmetric spaces of noncompact type
    J. Carlos Díaz-Ramos
    Miguel Domínguez-Vázquez
    Víctor Sanmartín-López
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 75 - 110
  • [45] Surjectivity of convolution operators on noncompact symmetric spaces
    Gonzalez, Fulton
    Wang, Jue
    Kakehi, Tomoyuki
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (02)
  • [46] Heat Kernel Estimates, Sobolev-Type Inequalities and Riesz Transform on Noncompact Riemannian Manifolds
    Coulhon, Thierry
    ANALYSIS AND GEOMETRY OF METRIC MEASURE SPACES, 2013, 56 : 55 - 65
  • [47] A note on the Green function estimates for symmetric stable processes
    Chen, ZQ
    Song, RM
    RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS, 2004, : 125 - 135
  • [48] Heat kernel estimates and parabolic Harnack inequalities for symmetric Dirichlet forms
    Chen, Zhen-Qing
    Kumagi, Takashi
    Wang, Jian
    ADVANCES IN MATHEMATICS, 2020, 374
  • [49] HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES WITH MIXED POLYNOMIAL GROWTHS
    Bae, Joohak
    Kang, Jaehoon
    Kim, Panki
    Lee, Jaehun
    ANNALS OF PROBABILITY, 2019, 47 (05): : 2830 - 2868
  • [50] HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES WITH ANISOTROPIC JUMPING KERNELS
    Kang, Jaehoon
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 385 - 399