HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES WITH ANISOTROPIC JUMPING KERNELS

被引:1
|
作者
Kang, Jaehoon [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Stochast Anal & Applicat Res Ctr, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Symmetric Markov jump process; heat kernel; integro-differential operator; anisotropic jumping kernel; UPPER-BOUNDS; DENSITIES; FORMS;
D O I
10.1090/proc/16103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show two-sided bounds of heat kernel for symmetric pure jump Markov process in R-d with jumping kernel J(x, y) that is comparable to 1V(x-y)/vertical bar x-y vertical bar(d+alpha), where V is a union of symmetric cones and 0 < alpha < 2.
引用
收藏
页码:385 / 399
页数:15
相关论文
共 50 条
  • [1] Heat kernels of non-symmetric jump processes with exponentially decaying jumping kernel
    Kim, Panki
    Lee, Jaehun
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (06) : 2130 - 2173
  • [2] Symmetric jump processes and their heat kernel estimates
    CHEN Zhen-Qing1
    Science China Mathematics, 2009, (07) : 1423 - 1445
  • [3] Symmetric jump processes and their heat kernel estimates
    Chen Zhen-Qing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (07): : 1423 - 1445
  • [4] Symmetric jump processes and their heat kernel estimates
    Zhen-Qing Chen
    Science in China Series A: Mathematics, 2009, 52 : 1423 - 1445
  • [5] GLOBAL HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES
    Chen, Zhen-Qing
    Kim, Panki
    Kumagai, Takashi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (09) : 5021 - 5055
  • [6] HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES WITH MIXED POLYNOMIAL GROWTHS
    Bae, Joohak
    Kang, Jaehoon
    Kim, Panki
    Lee, Jaehun
    ANNALS OF PROBABILITY, 2019, 47 (05): : 2830 - 2868
  • [7] Heat Kernel Estimates for Non-symmetric Finite Range Jump Processes
    Wang, Jie Ming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (02) : 229 - 248
  • [8] Heat Kernel Estimates for Non-symmetric Finite Range Jump Processes
    Jie Ming WANG
    Acta Mathematica Sinica,English Series, 2021, (02) : 229 - 248
  • [9] Heat Kernel Estimates for Non-symmetric Finite Range Jump Processes
    Jie Ming Wang
    Acta Mathematica Sinica, English Series, 2021, 37 : 229 - 248
  • [10] Symmetric jump processes: Localization, heat kernels and convergence
    Bass, Richard F.
    Kassmann, Moritz
    Kumagai, Takashi
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01): : 59 - 71