Proof of a Conjecture of Bárány, Katchalski and Pach

被引:0
|
作者
Márton Naszódi
机构
[1] Lorand Eötvös University,ELTE, Department of Geometry
来源
关键词
Helly’s theorem; Quantitative Helly theorem; Intersection of convex sets; Dvoretzky–Rogers lemma; John’s ellipsoid; Volume; 52A35;
D O I
暂无
中图分类号
学科分类号
摘要
Bárány, Katchalski and Pach (Proc Am Math Soc 86(1):109–114, 1982) (see also Bárány et al., Am Math Mon 91(6):362–365, 1984) proved the following quantitative form of Helly’s theorem. If the intersection of a family of convex sets in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} is of volume one, then the intersection of some subfamily of at most 2d members is of volume at most some constant v(d). In Bárány et al. (Am Math Mon 91(6):362–365, 1984), the bound v(d)≤d2d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(d)\le d^{2d^2}$$\end{document} was proved and v(d)≤dcd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(d)\le d^{cd}$$\end{document} was conjectured. We confirm it.
引用
收藏
页码:243 / 248
页数:5
相关论文
共 50 条