A proof of the Khavinson conjecture in R3

被引:10
|
作者
Melentijevic, Petar [1 ]
机构
[1] Univ Belgrade, Matemat Fak, Belgrade, Serbia
关键词
Khavinson problem; Bounded harmonic functions; Gradient of function; Radial derivative; Sharp estimate; Unit ball; HARMONIC-FUNCTIONS; SCHWARZ-LEMMA; GRADIENT;
D O I
10.1016/j.aim.2019.06.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with an extremal problem for bounded harmonic functions in the unit ball B-n. We solve the Khavinson conjecture in R-3, an intriguing open question since 1992 posed by D. Khavinson, later considered in a general context by Kresin and Maz'ya. Precisely, we obtain the following inequality: vertical bar del u(x)vertical bar <= 1/rho(2)((1+1/3 rho(2))(3/2)/1-rho 2 -1) sup(vertical bar y vertical bar<1)vertical bar u(y)vertical bar, with rho = vertical bar x vertical bar, thus sharpening the previously known with vertical bar <del u(x), n(x)>vertical bar instead of vertical bar del u(x)vertical bar, where n(x = )x/vertical bar x vertical bar (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1044 / 1065
页数:22
相关论文
共 50 条
  • [1] A proof of the Khavinson conjecture
    Liu, Congwen
    MATHEMATISCHE ANNALEN, 2021, 380 (1-2) : 719 - 732
  • [2] A proof of the Khavinson conjecture
    Congwen Liu
    Mathematische Annalen, 2021, 380 : 719 - 732
  • [3] A proof of Khavinson's conjecture in R4
    Kalaj, David
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (04) : 561 - 570
  • [4] Proof of the Henon-Lane-Emden conjecture in R3
    Li, Kui
    Zhang, Zhitao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) : 202 - 226
  • [5] Solution of the Propeller Conjecture in R3
    Heilman, Steven
    Jagannath, Aukosh
    Naor, Assaf
    STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2012, : 269 - 276
  • [6] On the nitsche conjecture for harmonic mappings in R2 and R3
    Kalaj, David
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 150 (1) : 241 - 251
  • [7] Another proof that R3 has no square root
    Nadler, SB
    AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (06): : 527 - 528
  • [8] The Khavinson-Shapiro conjecture and polynomial decompositions
    Lundberg, Erik
    Render, Hermann
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (02) : 506 - 513
  • [9] A proof of Alexandrov's uniqueness theorem for convex surfaces in R3
    Guan, Pengfei
    Wang, Zhizhang
    Zhang, Xiangwen
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02): : 329 - 336
  • [10] A new proof of the K?R conjecture
    Nenadov, Rajko
    ADVANCES IN MATHEMATICS, 2022, 406