Bárány, Katchalski and Pach (Proc Am Math Soc 86(1):109–114, 1982) (see also Bárány et al., Am Math Mon 91(6):362–365, 1984) proved the following quantitative form of Helly’s theorem. If the intersection of a family of convex sets in Rd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^d$$\end{document} is of volume one, then the intersection of some subfamily of at most 2d members is of volume at most some constant v(d). In Bárány et al. (Am Math Mon 91(6):362–365, 1984), the bound v(d)≤d2d2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v(d)\le d^{2d^2}$$\end{document} was proved and v(d)≤dcd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v(d)\le d^{cd}$$\end{document} was conjectured. We confirm it.