Proof of a Conjecture of Bárány, Katchalski and Pach

被引:0
|
作者
Márton Naszódi
机构
[1] Lorand Eötvös University,ELTE, Department of Geometry
来源
Discrete & Computational Geometry | 2016年 / 55卷
关键词
Helly’s theorem; Quantitative Helly theorem; Intersection of convex sets; Dvoretzky–Rogers lemma; John’s ellipsoid; Volume; 52A35;
D O I
暂无
中图分类号
学科分类号
摘要
Bárány, Katchalski and Pach (Proc Am Math Soc 86(1):109–114, 1982) (see also Bárány et al., Am Math Mon 91(6):362–365, 1984) proved the following quantitative form of Helly’s theorem. If the intersection of a family of convex sets in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} is of volume one, then the intersection of some subfamily of at most 2d members is of volume at most some constant v(d). In Bárány et al. (Am Math Mon 91(6):362–365, 1984), the bound v(d)≤d2d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(d)\le d^{2d^2}$$\end{document} was proved and v(d)≤dcd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(d)\le d^{cd}$$\end{document} was conjectured. We confirm it.
引用
收藏
页码:243 / 248
页数:5
相关论文
共 50 条
  • [31] Proof of a conjecture of Cooper
    Ye, Dongxi
    JOURNAL OF NUMBER THEORY, 2021, 222 : 38 - 47
  • [32] A Proof of Simmons' Conjecture
    Tor Helleseth
    Johannes Mykkeltveit
    Designs, Codes and Cryptography, 2004, 33 : 39 - 43
  • [33] Proof of a conjecture on unimodality
    Wang, Y
    Yeh, YN
    EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (05) : 617 - 627
  • [34] PROOF OF THE KNOP CONJECTURE
    Losev, Ivan V.
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (03) : 1105 - 1134
  • [35] PROOF FOR TALBOTS CONJECTURE
    GIGUERE, JC
    RAMACHANDRAN, V
    SWAMY, MNS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1974, AS21 (01): : 154 - 155
  • [36] PROOF OF A CONJECTURE OF KOMATU
    SILVERMAN, H
    HOUSTON JOURNAL OF MATHEMATICS, 1988, 14 (01): : 143 - 146
  • [37] A PROOF OF BOESCH CONJECTURE
    WANG, GF
    NETWORKS, 1994, 24 (05) : 277 - 284
  • [38] PROOF OF A CONJECTURE OF WHITNEY
    MASSEY, WS
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (01) : 143 - &
  • [39] Proof of the BMV conjecture
    Stahl, Herbert R.
    ACTA MATHEMATICA, 2013, 211 (02) : 255 - 290
  • [40] PROOF OF A CONJECTURE OF HELSON
    RUDIN, W
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (04) : 727 - &