Attractors for discrete nonlinear Schrödinger equation with delay

被引:0
|
作者
Tao Chen
Sheng-fan Zhou
Cai-di Zhao
机构
[1] Shanghai University,Admissions and Career Service
[2] Shanghai Normal University,Department of Applied Mathematics
[3] Wenzhou University,Department of Mathematics and Information Science
关键词
Discrete Schrödinger equation; delay; global attractor; upper semi-continuity; 35B40; 35Q55; 37L60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first prove the existence of the global attractor Av ε C([−v,0],ℓ2) (v>0) for a weak damping discrete nonlinear Schrödinger equation with delay. Then we consider an upper semi-continuity of Av as v → 0+.
引用
收藏
页码:633 / 642
页数:9
相关论文
共 50 条
  • [21] The Discrete Nonlinear Schrödinger Equation and its Lie Symmetry Reductions
    R Hernández Heredero
    D Levi
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 2) : 77 - 94
  • [22] Periodic Waves of a Discrete Higher Order Nonlinear Schrdinger Equation
    Robert Contete
    K.W. Chow
    CommunicationsinTheoreticalPhysics, 2006, 46 (12) : 961 - 965
  • [23] Closed form Solutions to the Integrable Discrete Nonlinear Schrödinger Equation
    Francesco Demontis
    Cornelis Van Der Mee
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 136 - 157
  • [24] Condensation transition and ensemble inequivalence in the discrete nonlinear Schrödinger equation
    Giacomo Gradenigo
    Stefano Iubini
    Roberto Livi
    Satya N. Majumdar
    The European Physical Journal E, 2021, 44
  • [25] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [26] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [27] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [28] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [29] Growth of Sobolev norms and strong convergence for the discrete nonlinear Schrödinger equation
    Chauleur, Quentin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 242
  • [30] A Fully Discrete Low-Regularity Integrator for the Nonlinear Schrödinger Equation
    Alexander Ostermann
    Fangyan Yao
    Journal of Scientific Computing, 2022, 91