Attractors for discrete nonlinear Schrödinger equation with delay

被引:0
|
作者
Tao Chen
Sheng-fan Zhou
Cai-di Zhao
机构
[1] Shanghai University,Admissions and Career Service
[2] Shanghai Normal University,Department of Applied Mathematics
[3] Wenzhou University,Department of Mathematics and Information Science
关键词
Discrete Schrödinger equation; delay; global attractor; upper semi-continuity; 35B40; 35Q55; 37L60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first prove the existence of the global attractor Av ε C([−v,0],ℓ2) (v>0) for a weak damping discrete nonlinear Schrödinger equation with delay. Then we consider an upper semi-continuity of Av as v → 0+.
引用
收藏
页码:633 / 642
页数:9
相关论文
共 50 条
  • [11] Erratum to: Breathers for the Discrete Nonlinear Schrödinger Equation with Nonlinear Hopping
    N. I. Karachalios
    B. Sánchez-Rey
    P. G. Kevrekidis
    J. Cuevas
    Journal of Nonlinear Science, 2013, 23 : 525 - 525
  • [12] The Hamiltonian dynamics of the soliton of the discrete nonlinear Schrödinger equation
    A. M. Kosevich
    Journal of Experimental and Theoretical Physics, 2001, 92 : 866 - 870
  • [13] Global Attractor for a Generalized Discrete Nonlinear Schrödinger Equation
    Jardel M. Pereira
    Acta Applicandae Mathematicae, 2014, 134 : 173 - 183
  • [14] Statistical Solution for the Nonlocal Discrete Nonlinear Schrödinger Equation
    Congcong Li
    Chunqiu Li
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [15] Superfluidity versus disorder in the discrete nonlinear Schrödinger equation
    Trombettoni, A.
    Smerzi, A.
    Bishop, A.R.
    Physical Review Letters, 2002, 88 (17) : 173902 - 173902
  • [16] On the symplectic integration of the discrete nonlinear Schrödinger equation with disorder
    E. Gerlach
    J. Meichsner
    C. Skokos
    The European Physical Journal Special Topics, 2016, 225 : 1103 - 1114
  • [17] Freezing of nonlinear Bloch oscillations in the generalized discrete nonlinear Schrödinger equation
    Cao, F.J.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (3 2): : 036614 - 1
  • [18] A semi-discrete scheme for the stochastic nonlinear Schrödinger equation
    A. De Bouard
    A. Debussche
    Numerische Mathematik, 2004, 96 : 733 - 770
  • [19] An Integrable Symplectic Map Related to Discrete Nonlinear Schrdinger Equation
    赵静
    周汝光
    Communications in Theoretical Physics, 2010, 53 (05) : 799 - 802
  • [20] The (G′/G)-expansion method for a discrete nonlinear Schrödinger equation
    Sheng Zhang
    Ling Dong
    Jin-Mei Ba
    Ying-Na Sun
    Pramana, 2010, 74 : 207 - 218