PredRSA: a gradient boosted regression trees approach for predicting protein solvent accessibility

被引:0
|
作者
Chao Fan
Diwei Liu
Rui Huang
Zhigang Chen
Lei Deng
机构
[1] Central South University,School of Software
[2] Shanghai Key Laboratory of Intelligent Information Processing,undefined
来源
关键词
Solvent accessibility; Sequence features; Gradient boosted regression trees;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] PredRSA: a gradient boosted regression trees approach for predicting protein solvent accessibility
    Fan, Chao
    Liu, Diwei
    Huang, Rui
    Chen, Zhigang
    Deng, Lei
    BMC BIOINFORMATICS, 2016, 17
  • [2] Predicting recessions with boosted regression trees
    Doepke, Joerg
    Fritsche, Ulrich
    Pierdzioch, Christian
    INTERNATIONAL JOURNAL OF FORECASTING, 2017, 33 (04) : 745 - 759
  • [3] PredPRBA: Prediction of Protein-RNA Binding Affinity Using Gradient Boosted Regression Trees
    Deng, Lei
    Yang, Wenyi
    Liu, Hui
    FRONTIERS IN GENETICS, 2019, 10
  • [4] Predicting Fusarium Head Blight Epidemics with Boosted Regression Trees
    Shah, D. A.
    De Wolf, E. D.
    Paul, P. A.
    Madden, L. V.
    PHYTOPATHOLOGY, 2014, 104 (07) : 702 - 714
  • [5] Predicting plant disease epidemics using boosted regression trees
    Peng, Chun
    Zhang, Xingyue
    Wang, Weiming
    INFECTIOUS DISEASE MODELLING, 2024, 9 (04) : 1138 - 1146
  • [6] Predicting protein secondary structure and solvent accessibility with an improved multiple linear regression method
    Qin, SB
    He, Y
    Pan, XM
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 61 (03) : 473 - 480
  • [7] Wind Ramp Event Prediction with Parallelized Gradient Boosted Regression Trees
    Gupta, Saurav
    Shrivastava, Nitin Anand
    Khosravi, Abbas
    Panigrahi, Bijaya Ketan
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 5296 - 5301
  • [8] Instance-Based Uncertainty Estimation for Gradient-Boosted Regression Trees
    Brophy, Jonathan
    Lowd, Daniel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [9] Predicting urban cold-air paths using boosted regression trees
    Grunwald, Laura
    Schneider, Anne-Kathrin
    Schroeder, Boris
    Weber, Stephan
    LANDSCAPE AND URBAN PLANNING, 2020, 201
  • [10] Cyanotoxin level prediction in a reservoir using gradient boosted regression trees: a case study
    Paulino José García Nieto
    Esperanza García-Gonzalo
    Fernando Sánchez Lasheras
    José Ramón Alonso Fernández
    Cristina Díaz Muñiz
    Francisco Javier de Cos Juez
    Environmental Science and Pollution Research, 2018, 25 : 22658 - 22671