PredRSA: a gradient boosted regression trees approach for predicting protein solvent accessibility

被引:0
|
作者
Chao Fan
Diwei Liu
Rui Huang
Zhigang Chen
Lei Deng
机构
[1] Central South University,School of Software
[2] Shanghai Key Laboratory of Intelligent Information Processing,undefined
来源
关键词
Solvent accessibility; Sequence features; Gradient boosted regression trees;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Key feature space for predicting the glass-forming ability of amorphous alloys revealed by gradient boosted decision trees model
    Liu, X. W.
    Long, Z. L.
    Zhang, W.
    Yang, L. M.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 901
  • [42] Predicting forest site productivity in temperate lowland from forest floor, soil and litterfall characteristics using boosted regression trees
    Aertsen, Wim
    Kint, Vincent
    De Vos, Bruno
    Deckers, Jozef
    Van Orshoven, Jos
    Muys, Bart
    PLANT AND SOIL, 2012, 354 (1-2) : 157 - 172
  • [43] Predicting forest site productivity in temperate lowland from forest floor, soil and litterfall characteristics using boosted regression trees
    Wim Aertsen
    Vincent Kint
    Bruno De Vos
    Jozef Deckers
    Jos Van Orshoven
    Bart Muys
    Plant and Soil, 2012, 354 : 157 - 172
  • [44] Assessing the Effects of Urban Morphology Parameters on PM2.5 Distribution in Northeast China Based on Gradient Boosted Regression Trees Method
    Cui, Peng
    Dai, Chunyu
    Zhang, Jun
    Li, Tingting
    SUSTAINABILITY, 2022, 14 (05)
  • [45] A Consensus Approach to Predicting Protein Contact Map via Logistic Regression
    Yang, Jian-Yi
    Chen, Xin
    BIOINFORMATICS RESEARCH AND APPLICATIONS, 2011, 6674 : 136 - 147
  • [46] Predicting severity of foreign body injuries in children in upper airways: An approach based on regression trees
    Berchialla, Paola
    Snidero, Silvia
    Stancu, Alexandru
    Scarinzi, Cecilia
    Corradetti, Roberto
    Gregori, Dario
    RISK ANALYSIS, 2007, 27 (05) : 1255 - 1263
  • [47] Classification and Regression Trees Approach for Predicting Current-Induced Scour Depth Under Pipelines
    Yasa, R.
    Etemad-Shahidi, A.
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (01):
  • [48] Predicting deseasonalised serum 25 hydroxy vitamin D concentrations in the D-Health Trial: An analysis using boosted regression trees
    Waterhouse, Mary
    Baxter, Catherine
    Romero, Briony Duarte
    McLeod, Donald S. A.
    English, Dallas R.
    Armstrong, Bruce K.
    Clarke, Michael W.
    Ebeling, Peter R.
    Hartel, Gunter
    Kimlin, Michael G.
    O'Connell, Rachel L.
    Pham, Hai
    Harris, Rachael M. Rodney
    van der Pols, Jolieke C.
    Venn, Alison J.
    Webb, Penelope M.
    Whiteman, David C.
    Neale, Rachel E.
    CONTEMPORARY CLINICAL TRIALS, 2021, 104
  • [49] Comparative study of multilayer perceptron-stochastic gradient descent and gradient boosted trees for predicting daily suspended sediment load: The case study of the Mississippi River, US
    Shadkani, Sadra
    Abbaspour, Akram
    Samadianfard, Saeed
    Hashemi, Sajjad
    Mosavi, Amirhosein
    Band, Shahab S.
    INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH, 2021, 36 (04) : 512 - 523
  • [50] Modeling algal atypical proliferation in La Barca reservoir using L-SHADE optimized gradient boosted regression trees: a case study
    Garcia-Nieto, Paulino Jose
    Garcia-Gonzalo, Esperanza
    Alonso Fernandez, Jose Ramon
    Diaz Muniz, Cristina
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (13): : 7821 - 7838