Predicting plant disease epidemics using boosted regression trees

被引:0
|
作者
Peng, Chun [1 ]
Zhang, Xingyue [2 ]
Wang, Weiming [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Peoples R China
[2] Ecole Polytech Fed Lausanne, Rte Cantonale, CH-1015 Lausanne, Switzerland
基金
中国国家自然科学基金;
关键词
Plant disease epidemics; Scalar -on -function model; Boosted regression trees; HEAD BLIGHT EPIDEMICS; WHEAT; MODELS;
D O I
10.1016/j.idm.2024.06.006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plant epidemics are often associated with weather-related variables. It is dif ficult to identify weather-related predictors for models predicting plant epidemics. In the article by Shah et al., to predict Fusarium head blight (FHB) epidemics of wheat, they explored a functional approach using scalar-on-function regression to model a binary outcome (FHB epidemic or non-epidemic) with respect to weather time series spanning 140 days relative to anthesis. The scalar-on-function models fi t the data better than previously described logistic regression models. In this work, given the same dataset and models, we attempt to reproduce the article by Shah et al. using a different approach, boosted regression trees. After fitting, the classi fication accuracy and model statistics are surprisingly good. (c) 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1138 / 1146
页数:9
相关论文
共 50 条
  • [1] Predicting Fusarium Head Blight Epidemics with Boosted Regression Trees
    Shah, D. A.
    De Wolf, E. D.
    Paul, P. A.
    Madden, L. V.
    PHYTOPATHOLOGY, 2014, 104 (07) : 702 - 714
  • [2] Predicting soil fauna effect on plant litter decomposition by using boosted regression trees
    Zhang, Weidong
    Yuan, Shufen
    Hu, Ning
    Lou, Yilai
    Wang, Silong
    SOIL BIOLOGY & BIOCHEMISTRY, 2015, 82 : 81 - 86
  • [3] Predicting recessions with boosted regression trees
    Doepke, Joerg
    Fritsche, Ulrich
    Pierdzioch, Christian
    INTERNATIONAL JOURNAL OF FORECASTING, 2017, 33 (04) : 745 - 759
  • [4] Predicting left main stenosis in stable ischemic heart disease using logistic regression and boosted trees
    Godoy, Lucas C.
    Farkouh, Michael E.
    Austin, Peter C.
    Shah, Baiju R.
    Qiu, Feng
    Sud, Maneesh
    Wijeysundera, Harindra C.
    Mancini, G. B. John
    Ko, Dennis T.
    AMERICAN HEART JOURNAL, 2023, 256 : 117 - 127
  • [5] Predicting urban cold-air paths using boosted regression trees
    Grunwald, Laura
    Schneider, Anne-Kathrin
    Schroeder, Boris
    Weber, Stephan
    LANDSCAPE AND URBAN PLANNING, 2020, 201
  • [6] Principles or Predicting Plant Virus Disease Epidemics
    Jones, Roger A. C.
    Salam, Moin U.
    Maling, Timothy J.
    Diggle, Arthur J.
    Thackray, Deborah J.
    ANNUAL REVIEW OF PHYTOPATHOLOGY, VOL 48, 2010, 48 : 179 - 203
  • [7] PredRSA: a gradient boosted regression trees approach for predicting protein solvent accessibility
    Fan, Chao
    Liu, Diwei
    Huang, Rui
    Chen, Zhigang
    Deng, Lei
    BMC BIOINFORMATICS, 2016, 17
  • [8] PredRSA: a gradient boosted regression trees approach for predicting protein solvent accessibility
    Chao Fan
    Diwei Liu
    Rui Huang
    Zhigang Chen
    Lei Deng
    BMC Bioinformatics, 17
  • [9] Prediction of fishing effort distributions using boosted regression trees
    Soykan, Candan U.
    Eguchi, Tomoharu
    Kohin, Suzanne
    Dewar, Heidi
    ECOLOGICAL APPLICATIONS, 2014, 24 (01) : 71 - 83
  • [10] Heart Rate Turbulence Modeling using Boosted Regression Trees
    Barquero-Perez, O.
    Goya-Esteban, R.
    Garcia-Alberola, A.
    Rojo-Alvarez, J. L.
    2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 989 - 992