New quantum surface codes from semi-regular tessellations

被引:0
|
作者
Eduardo Brandani da Silva
Evandro Mazetto Brizola
Waldir Silva Soares
Douglas Fernando Copatti
机构
[1] Maringá State University,Department of Mathematics
[2] UEM,Department of Mathematics, Campus de Pato Branco
[3] UTFPR,Department of Mathematics
[4] Universidade Técnológica Federal do Paraná,undefined
[5] UTFPR,undefined
[6] Instituto Federal do Paraná - Campus Pitanga,undefined
来源
Quantum Information Processing | / 22卷
关键词
Quantum codes; Surface codes; Semi-regular tessellations; Uniform tiling;
D O I
暂无
中图分类号
学科分类号
摘要
Current work presents a new approach to quantum surface codes on compact surfaces with genus g≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \ge 2$$\end{document} using the identification of these surfaces with hyperbolic polygons and hyperbolic semi-regular tessellations. This method generalizes other contructions, and we show that this approach may give rise to codes with very good parameters. We present tables with several examples of these codes whose parameters had not been shown before.
引用
收藏
相关论文
共 50 条
  • [41] CLASSIFICATION OF SEMI-REGULAR GROUP DIVISIBLE DESIGNS
    MUKERJEE, R
    KAGEYAMA, S
    ARS COMBINATORIA, 1988, 25 : 51 - 57
  • [42] On the Structure of Essentially Semi-Regular Linear Relations
    Teresa Álvarez
    Sonia Keskes
    Maher Mnif
    Mediterranean Journal of Mathematics, 2019, 16
  • [43] SEMI-REGULAR MAPS - PRELIMINARY-REPORT
    ZAKS, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (04): : A462 - A462
  • [44] ON CYCLIC SEMI-REGULAR GROUP DIVISIBLE DESIGNS
    MUKERJEE, R
    JIMBO, M
    KAGEYAMA, S
    OSAKA JOURNAL OF MATHEMATICS, 1987, 24 (02) : 395 - 407
  • [46] SEMI-REGULAR DIVISIBLE DESIGNS AND FROBENIUS GROUPS
    SPERA, AG
    GEOMETRIAE DEDICATA, 1992, 42 (03) : 285 - 294
  • [47] A Family of Semi-Regular Divisible Difference Sets
    Ma S.L.
    Sehgal S.K.
    Designs, Codes and Cryptography, 1997, 11 (1) : 73 - 78
  • [48] Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Surface Meshes
    Hahner, Sara
    Kerkhoff, Felix
    Garcke, Jochen
    LEARNING ON GRAPHS CONFERENCE, VOL 198, 2022, 198
  • [49] On the nonexistence of semi-regular relative difference sets
    Leung, Ka Hin
    Schmidt, Bernhard
    Zhang, Tao
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 193
  • [50] Semi-regular graphs of minimum independence number
    Nelson, P
    Radcliffe, A
    DISCRETE MATHEMATICS, 2004, 275 (1-3) : 237 - 263