New quantum surface codes from semi-regular tessellations

被引:0
|
作者
Eduardo Brandani da Silva
Evandro Mazetto Brizola
Waldir Silva Soares
Douglas Fernando Copatti
机构
[1] Maringá State University,Department of Mathematics
[2] UEM,Department of Mathematics, Campus de Pato Branco
[3] UTFPR,Department of Mathematics
[4] Universidade Técnológica Federal do Paraná,undefined
[5] UTFPR,undefined
[6] Instituto Federal do Paraná - Campus Pitanga,undefined
来源
Quantum Information Processing | / 22卷
关键词
Quantum codes; Surface codes; Semi-regular tessellations; Uniform tiling;
D O I
暂无
中图分类号
学科分类号
摘要
Current work presents a new approach to quantum surface codes on compact surfaces with genus g≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \ge 2$$\end{document} using the identification of these surfaces with hyperbolic polygons and hyperbolic semi-regular tessellations. This method generalizes other contructions, and we show that this approach may give rise to codes with very good parameters. We present tables with several examples of these codes whose parameters had not been shown before.
引用
收藏
相关论文
共 50 条
  • [31] ON THE SIZE OF EQUIFACETTED SEMI-REGULAR POLYTOPES
    Pisanski, Tomaz
    Schulte, Egon
    Weiss, Asia Ivic
    GLASNIK MATEMATICKI, 2012, 47 (02) : 421 - 430
  • [32] Remeshing schemes for semi-regular tilings
    Akleman, E
    Srinivasan, V
    Mandal, E
    INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, PROCEEDINGS, 2005, : 44 - 50
  • [33] Semi-regular Tilings of the Hyperbolic Plane
    Datta, Basudeb
    Gupta, Subhojoy
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (02) : 531 - 553
  • [34] ON THE TOPOLOGY GENERATED BY SEMI-REGULAR SETS
    DLASKA, K
    ERGUN, N
    GANSTER, M
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1994, 25 (11): : 1163 - 1170
  • [35] COMMUTATIVE SEMI-COHERENT AND SEMI-REGULAR RINGS
    MATLIS, E
    JOURNAL OF ALGEBRA, 1985, 95 (02) : 343 - 372
  • [36] Regular and semi-regular positive ternary quadratic forms.
    Jones, BW
    Pall, G
    ACTA MATHEMATICA, 1939, 70 (01) : 165 - 191
  • [37] Chemical composition of semi-regular variable giants
    Andrievsky, S. M.
    Korotin, S. A.
    Martin, P.
    ASTRONOMY & ASTROPHYSICS, 2007, 464 (02) : 709 - 713
  • [38] Statistical study of 173 semi-regular variables
    Andronov, IL
    Chinarova, LL
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XVII, PROCEEDINGS: INDUSTRIAL SYSTEMS AND ENGINEERING III, 2002, : 462 - 467
  • [39] Semi-regular varieties and variational Hodge conjecture
    Dan, Ananyo
    Kaur, Inder
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (03) : 297 - 300
  • [40] Constructions of semi-regular relative difference sets
    Leung, KH
    Ling, S
    Ma, SL
    FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (03) : 397 - 414