Using extremal events to characterize noisy time series

被引:0
|
作者
Eric Berry
Bree Cummins
Robert R. Nerem
Lauren M. Smith
Steven B. Haase
Tomas Gedeon
机构
[1] Montana State University,Department of Mathematical Sciences
[2] Duke University,Biology Department
来源
关键词
Time series; Merge trees; Order of extrema; Partial orders; 05C12; 06A06; 37M10;
D O I
暂无
中图分类号
学科分类号
摘要
Experimental time series provide an informative window into the underlying dynamical system, and the timing of the extrema of a time series (or its derivative) contains information about its structure. However, the time series often contain significant measurement errors. We describe a method for characterizing a time series for any assumed level of measurement error ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} by a sequence of intervals, each of which is guaranteed to contain an extremum for any function that ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-approximates the time series. Based on the merge tree of a continuous function, we define a new object called the normalized branch decomposition, which allows us to compute intervals for any level ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. We show that there is a well-defined total order on these intervals for a single time series, and that it is naturally extended to a partial order across a collection of time series comprising a dataset. We use the order of the extracted intervals in two applications. First, the partial order describing a single dataset can be used to pattern match against switching model output (Cummins et al. in SIAM J Appl Dyn Syst 17(2):1589–1616, 2018), which allows the rejection of a network model. Second, the comparison between graph distances of the partial orders of different datasets can be used to quantify similarity between biological replicates.
引用
收藏
页码:1523 / 1557
页数:34
相关论文
共 50 条
  • [41] Parameter sensitivity of noisy chaotic time series
    Hung, ES
    PHYSICAL REVIEW E, 1997, 56 (01) : 235 - 238
  • [42] Comparative Analysis of Noisy Time Series Clustering
    Kirichenko, Lyudmyla
    Radivilova, Tamara
    Tkachenko, Anastasiia
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT SYSTEMS (COLINS-2019), VOL I: MAIN CONFERENCE, 2019, 2362 : 184 - 196
  • [43] Correction of the correlation dimension for noisy time series
    Kugiumtzis, D
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (06): : 1283 - 1294
  • [44] MEASURING THE PREDICTABILITY OF NOISY RECURRENT TIME SERIES
    Wayland, P.
    Pickett, D.
    Bromley, D.
    Passamante, A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (03): : 797 - 802
  • [45] Spectral analysis in frequency and time domain for noisy time series
    Fontanella, L
    Granturco, M
    ADVANCES IN MULTIVARIATE DATA ANALYSIS, 2004, : 67 - 79
  • [46] Discrimination between Speech and Music Using Time Series Events
    Alnadabi, Muhammad
    Johnstone, Sherri
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 565 - +
  • [47] Agribusiness Time Series Forecasting using Perceptually Important Events
    Rodrigues, Lucas S.
    Rezende, Solange O.
    Moura, Maria F.
    Marcacini, Ricardo M.
    2018 XLIV LATIN AMERICAN COMPUTER CONFERENCE (CLEI 2018), 2018, : 268 - 277
  • [48] Using modern time series analysis techniques to predict ENSO events from the SOI time series
    Salisbury, JI
    Wimbush, M
    NONLINEAR PROCESSES IN GEOPHYSICS, 2002, 9 (3-4) : 341 - 345
  • [49] Community Detection in Bipartite Networks Using a Noisy Extremal Optimization Algorithm
    Gasko, Noemi
    Lung, Rodica Ioana
    Suciu, Mihai Alexandru
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016), 2017, 557 : 871 - 878
  • [50] Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models
    Division of Biophysical Engineering, Dept. of Systems and Human Science, Osaka University, Toyonaka City, Osaka 560-8531, Japan
    Phys Rev E., 1 (1073-1076):