Using extremal events to characterize noisy time series

被引:0
|
作者
Eric Berry
Bree Cummins
Robert R. Nerem
Lauren M. Smith
Steven B. Haase
Tomas Gedeon
机构
[1] Montana State University,Department of Mathematical Sciences
[2] Duke University,Biology Department
来源
关键词
Time series; Merge trees; Order of extrema; Partial orders; 05C12; 06A06; 37M10;
D O I
暂无
中图分类号
学科分类号
摘要
Experimental time series provide an informative window into the underlying dynamical system, and the timing of the extrema of a time series (or its derivative) contains information about its structure. However, the time series often contain significant measurement errors. We describe a method for characterizing a time series for any assumed level of measurement error ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} by a sequence of intervals, each of which is guaranteed to contain an extremum for any function that ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-approximates the time series. Based on the merge tree of a continuous function, we define a new object called the normalized branch decomposition, which allows us to compute intervals for any level ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. We show that there is a well-defined total order on these intervals for a single time series, and that it is naturally extended to a partial order across a collection of time series comprising a dataset. We use the order of the extracted intervals in two applications. First, the partial order describing a single dataset can be used to pattern match against switching model output (Cummins et al. in SIAM J Appl Dyn Syst 17(2):1589–1616, 2018), which allows the rejection of a network model. Second, the comparison between graph distances of the partial orders of different datasets can be used to quantify similarity between biological replicates.
引用
收藏
页码:1523 / 1557
页数:34
相关论文
共 50 条
  • [31] Noisy Time Series Prediction using Recurrent Neural Networks and Grammatical Inference
    C. Lee Giles
    Steve Lawrence
    Ah Chung Tsoi
    Machine Learning, 2001, 44 : 161 - 183
  • [32] Modelling extremal events using Gnedenko distributions
    Huillet, T
    Raynaud, HF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (07): : 1099 - 1113
  • [33] Delay estimation from noisy time series
    Ohira, T
    Sawatari, R
    PHYSICAL REVIEW E, 1997, 55 (03) : R2077 - R2080
  • [34] Improving forecasts for noisy geographic time series
    Huddleston, Samuel H.
    Porter, John H.
    Brown, Donald E.
    JOURNAL OF BUSINESS RESEARCH, 2015, 68 (08) : 1810 - 1818
  • [35] Combinatorial detection of determinism in noisy time series
    Amigo, J. M.
    Zambrano, S.
    Sanjuan, M. A. F.
    EPL, 2008, 83 (06)
  • [36] Dynamical complexity of short and noisy time series
    Nagaraj, Nithin
    Balasubramanian, Karthi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (10): : 2191 - 2204
  • [37] Modeling noisy time series: Physiological tremor
    Timmer, J
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07): : 1505 - 1516
  • [38] DETECTING CHAOS IN A NOISY TIME-SERIES
    WILSON, HB
    RAND, DA
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1993, 253 (1338) : 239 - 244
  • [39] Local filtering of noisy nonlinear time series
    Walker, DM
    PHYSICS LETTERS A, 1998, 249 (03) : 209 - 217
  • [40] Alignment of Noisy and Uniformly Scaled Time Series
    Lipowsky, Constanze
    Dranischnikow, Egor
    Goettler, Herbert
    Gottron, Thomas
    Kemeter, Mathias
    Schoemer, Elmar
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2009, 5690 : 675 - 688