A non-local semilinear eigenvalue problem

被引:0
|
作者
Giovanni Franzina
Danilo Licheri
机构
[1] Istituto per le Applicazioni del Calcolo “M. Picone”,Dipartimento di Matematica e Informatica
[2] Consiglio Nazionale delle Ricerche,undefined
[3] Università degli Studi di Cagliari,undefined
关键词
Eigenvalues; Constrained critical points; Lane–Emden equation; 35P30; 49R05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that positive solutions of the fractional Lane–Emden equation with homogeneous Dirichlet boundary conditions satisfy pointwise estimates in terms of the best constant in Poincaré’s inequality on all open sets, and are isolated in L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} on smooth bounded ones, whence we deduce the isolation of the first non-local semilinear eigenvalue.
引用
收藏
页码:2193 / 2221
页数:28
相关论文
共 50 条
  • [31] A non-local inverse problem with boundary response
    Ghosh, Tuhin
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (06) : 2011 - 2032
  • [32] Galerkin method applied for a non-local problem
    Guezane-Lakoud, A.
    Boumaza, N.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2010, 19 (D10): : 63 - 71
  • [33] Non-local elliptic problem in higher dimension
    Miyasita, Tosiya
    OSAKA JOURNAL OF MATHEMATICS, 2007, 44 (01) : 159 - 172
  • [34] Remarks on the spectrum of a non-local Dirichlet problem
    Benguria, Rafael D.
    Pereira, Marcone C.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (06) : 1898 - 1915
  • [35] Asymptotic behaviour for a non-local parabolic problem
    Liu Qilin
    Liang Fei
    Li Yuxiang
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2009, 20 : 247 - 267
  • [36] On a non-local curve evolution problem in the plane
    Jiang, Lishang
    Pan, Shengliang
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2008, 16 (01) : 1 - 26
  • [38] A Multiplicity Result for a Non-local Critical Problem
    Guo, Hui
    Wang, Tao
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (06): : 1389 - 1421
  • [39] Strict Monotonicity and Unique Continuation for General Non-local Eigenvalue Problems
    Frassu, Silvia
    Iannizzotto, Antonio
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (03): : 681 - 694
  • [40] New Approach of FEM for Eigenvalue Problems with Non-local Transition Conditions
    Andreev, A. B.
    Racheva, M. R.
    NUMERICAL ANALYSIS AND ITS APPLICATIONS: 4TH INTERNATIONAL CONFERENCE, NAA 2008, 2009, 5434 : 159 - +