We prove that positive solutions of the fractional Lane–Emden equation with homogeneous Dirichlet boundary conditions satisfy pointwise estimates in terms of the best constant in Poincaré’s inequality on all open sets, and are isolated in L1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^1$$\end{document} on smooth bounded ones, whence we deduce the isolation of the first non-local semilinear eigenvalue.
机构:
Univ Sci & Technol China, Math Sci, Jinzhai Lu 96, Hefei 230026, Peoples R ChinaUniv Sci & Technol China, Math Sci, Jinzhai Lu 96, Hefei 230026, Peoples R China
Cheng, Zhiwei
Mikayelyan, Hayk
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nottingham Ningbo China, Math Sci, Taikang Dong Lu 199, Ningbo 315100, Peoples R ChinaUniv Sci & Technol China, Math Sci, Jinzhai Lu 96, Hefei 230026, Peoples R China