Maximal regularity for non-autonomous evolution equations governed by forms having less regularity

被引:0
|
作者
El Maati Ouhabaz
机构
[1] University Bordeaux,Institut de Mathématiques de Bordeaux, CNRS UMR 5251
来源
Archiv der Mathematik | 2015年 / 105卷
关键词
35K90; 35K50; 35K45; 47D06; Maximal regularity; Sesquilinear forms; Non-autonomous evolution equations; Differential operators with boundary conditions;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the maximal regularity problem for non-autonomous evolution equations 0.1u′(t)+A(t)u(t)=f(t),t∈(0,τ]u(0)=u0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l}{u'(t) + A(t)\,u(t) = f(t), \quad t \in (0, \tau]}\\ {u(0) = u_0.}\end{array}$$\end{document}Each operator A(t) is associated with a sesquilinear form a(t) on a Hilbert space H. We assume that these forms all have the same domain V. It is proved in Haak and Ouhabaz (Math Ann, doi:10.1007/s00208-015-1199-7, 2015) that if the forms have some regularity with respect to t (e.g., piecewise α-Hölder continuous for some α > ½) then the above problem has maximal Lp-regularity for all u0 in the real-interpolation space (H,D(A(0)))1-1/p,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H, \fancyscript{D}(A(0)))_{1-{1}/{p},p}$$\end{document}. In this paper we prove that the regularity required there can be improved for a class of sesquilinear forms. The forms considered here are such that the difference a(t;.,.) − a(s;.,.) is continuous on a larger space than the common domain V. We give three examples which illustrate our results.
引用
收藏
页码:79 / 91
页数:12
相关论文
共 50 条
  • [21] Stability for non-autonomous linear evolution equations with L p -maximal regularity
    Laasri, Hafida
    El-Mennaoui, Omar
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (04) : 887 - 908
  • [22] Maximal regularity for non-autonomous stochastic evolution equations in UMD Banach spaces
    Ton Viet Ta
    Yagi, Atsushi
    Yamamoto, Yoshitaka
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (05): : 857 - 879
  • [23] Maximal regularity for semilinear non-autonomous evolution equations in temporally weighted spaces
    Tebbani Hossni
    Achache Mahdi
    Arabian Journal of Mathematics, 2022, 11 : 539 - 547
  • [24] Maximal regularity for semilinear non-autonomous evolution equations in temporally weighted spaces
    Hossni, Tebbani
    Mahdi, Achache
    ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 539 - 547
  • [25] Maximal regularity for non-autonomous stochastic evolution equations in UMD Banach spaces
    Tôn Việt Tạ
    Atsushi Yagi
    Yoshitaka Yamamoto
    Proceedings - Mathematical Sciences, 2017, 127 : 857 - 879
  • [26] Maximal Regularity for Non-autonomous Equations with Measurable Dependence on Time
    Chiara Gallarati
    Mark Veraar
    Potential Analysis, 2017, 46 : 527 - 567
  • [27] Maximal Regularity for Non-autonomous Equations with Measurable Dependence on Time
    Gallarati, Chiara
    Veraar, Mark
    POTENTIAL ANALYSIS, 2017, 46 (03) : 527 - 567
  • [28] Holder regularity for non-autonomous fractional evolution equations
    He, Jia Wei
    Zhou, Yong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (02) : 378 - 407
  • [29] Non-autonomous maximal regularity in Hilbert spaces
    Dier, Dominik
    Zacher, Rico
    JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (03) : 883 - 907
  • [30] Non-autonomous maximal regularity in Hilbert spaces
    Dominik Dier
    Rico Zacher
    Journal of Evolution Equations, 2017, 17 : 883 - 907