Non-autonomous maximal regularity in Hilbert spaces

被引:0
|
作者
Dominik Dier
Rico Zacher
机构
[1] University of Ulm,Institute of Applied Analysis
来源
关键词
Sesquilinear forms; Non-autonomous evolution equations; Maximal regularity; 35K90; 35K50; 35K45; 47D06;
D O I
暂无
中图分类号
学科分类号
摘要
We consider non-autonomous evolutionary problems of the form u′(t)+A(t)u(t)=f(t),u(0)=u0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u' (t)+A(t)u(t) = f(t), \quad u(0) = u_{0},$$\end{document}on L2([0,T];H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{2}([0, T]; H)}$$\end{document}, where H is a Hilbert space. We do not assume that the domain of the operator A(t) is constant in time t, but that A(t) is associated with a sesquilinear form a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{a}(t)}$$\end{document}. Under sufficient time regularity of the forms a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{a}(t)}$$\end{document}, we prove well-posedness with maximal regularity in L2([0,T];H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{2}([0, T]; H)}$$\end{document}. Our regularity assumption is significantly weaker than those from previous results inasmuch as we only require a fractional Sobolev regularity with arbitrary small Sobolev index.
引用
收藏
页码:883 / 907
页数:24
相关论文
共 50 条
  • [1] Non-autonomous maximal regularity in Hilbert spaces
    Dier, Dominik
    Zacher, Rico
    JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (03) : 883 - 907
  • [2] MAXIMAL REGULARITY FOR NON-AUTONOMOUS CAUCHY PROBLEMS IN WEIGHTED SPACES
    Mahdi, Achache
    Hossni, Tebbani
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [3] Maximal regularity for non-autonomous evolution equations
    Bernhard H. Haak
    El Maati Ouhabaz
    Mathematische Annalen, 2015, 363 : 1117 - 1145
  • [4] Maximal Regularity for Non-autonomous Evolutionary Equations
    Trostorff, Sascha
    Waurick, Marcus
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (03)
  • [5] Maximal regularity for non-autonomous evolution equations
    Haak, Bernhard H.
    Ouhabaz, El Maati
    MATHEMATISCHE ANNALEN, 2015, 363 (3-4) : 1117 - 1145
  • [6] Maximal Regularity for Non-autonomous Evolutionary Equations
    Sascha Trostorff
    Marcus Waurick
    Integral Equations and Operator Theory, 2021, 93
  • [7] Maximal regularity for non-autonomous stochastic evolution equations in UMD Banach spaces
    Ton Viet Ta
    Yagi, Atsushi
    Yamamoto, Yoshitaka
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (05): : 857 - 879
  • [8] Maximal regularity for semilinear non-autonomous evolution equations in temporally weighted spaces
    Hossni, Tebbani
    Mahdi, Achache
    ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 539 - 547
  • [9] Maximal regularity for non-autonomous stochastic evolution equations in UMD Banach spaces
    Tôn Việt Tạ
    Atsushi Yagi
    Yoshitaka Yamamoto
    Proceedings - Mathematical Sciences, 2017, 127 : 857 - 879
  • [10] Maximal regularity for semilinear non-autonomous evolution equations in temporally weighted spaces
    Tebbani Hossni
    Achache Mahdi
    Arabian Journal of Mathematics, 2022, 11 : 539 - 547