The full-information best choice problem asks one to find a strategy maximising the probability of stopping at the minimum (or maximum) of a sequence X1,⋯,Xn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_1,\cdots ,X_n$$\end{document} of i.i.d. random variables with continuous distribution. In this paper we look at more general models, where independent Xj\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_j$$\end{document}’s may have different distributions, discrete or continuous. A central role in our study is played by the running minimum process, which we first employ to re-visit the classic problem and its limit Poisson counterpart. The approach is further applied to two explicitly solvable models: in the first the distribution of the jth variable is uniform on {j,⋯,n}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{j,\cdots ,n\}$$\end{document}, and in the second it is uniform on {1,⋯,n}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{1,\cdots , n\}$$\end{document}.